WebashalarForML commited on
Commit
0e7a640
·
verified ·
1 Parent(s): 0f3ff7d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -82,13 +82,14 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
82
  # Prediction analysis models loaded from Hugging Face.
83
  src_path = hf_hub_download(
84
  repo_id="WebashalarForML/Diamond_model_",
85
- filename="models_list/mkble/DecisionTree_best_pipeline_mkble_with_assitance.pkl",
86
  cache_dir=MODEL_FOLDER
87
  )
88
- dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_with_assitance.pkl")
89
  shutil.copy(src_path, dst_path)
90
  makable_model = load(dst_path)
91
 
 
92
  src_path = hf_hub_download(
93
  repo_id="WebashalarForML/Diamond_model_",
94
  filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
@@ -117,7 +118,7 @@ src_path = hf_hub_download(
117
  dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
118
  shutil.copy(src_path, dst_path)
119
  gia_model = load(dst_path)
120
-
121
 
122
  #classsification model on the task
123
  src_path = hf_hub_download(
@@ -133,9 +134,9 @@ mkble_amt_class_model = load(dst_path)
133
 
134
 
135
  print("makable_model type:", type(makable_model))
136
- print("grade_model type:", type(grade_model))
137
- print("bygrade_model type:", type(bygrade_model))
138
- print("gia_model type:", type(gia_model))
139
  print("================================")
140
  print("mkble_amt_class_model type:", type(mkble_amt_class_model))
141
 
@@ -260,7 +261,9 @@ def process_dataframe(df):
260
 
261
  # Create two DataFrames: one for prediction and one for classification.
262
  df_pred = df[required_columns].copy()
 
263
  df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
 
264
  df_class = df[required_columns_2].fillna("NA").copy()
265
 
266
  # Transform categorical columns for prediction DataFrame using the label encoders.
 
82
  # Prediction analysis models loaded from Hugging Face.
83
  src_path = hf_hub_download(
84
  repo_id="WebashalarForML/Diamond_model_",
85
+ filename="models_list/mkble/DecisionTree_best_pipeline_mkble_0_to_0.99.pkl",
86
  cache_dir=MODEL_FOLDER
87
  )
88
+ dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_0_to_0.99.pkl")
89
  shutil.copy(src_path, dst_path)
90
  makable_model = load(dst_path)
91
 
92
+ '''
93
  src_path = hf_hub_download(
94
  repo_id="WebashalarForML/Diamond_model_",
95
  filename="models_list/grd/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl",
 
118
  dst_path = os.path.join(MODEL_FOLDER, "StackingRegressor_best_pipeline_gia_0_to_1.01.pkl")
119
  shutil.copy(src_path, dst_path)
120
  gia_model = load(dst_path)
121
+ '''
122
 
123
  #classsification model on the task
124
  src_path = hf_hub_download(
 
134
 
135
 
136
  print("makable_model type:", type(makable_model))
137
+ #print("grade_model type:", type(grade_model))
138
+ #print("bygrade_model type:", type(bygrade_model))
139
+ #print("gia_model type:", type(gia_model))
140
  print("================================")
141
  print("mkble_amt_class_model type:", type(mkble_amt_class_model))
142
 
 
261
 
262
  # Create two DataFrames: one for prediction and one for classification.
263
  df_pred = df[required_columns].copy()
264
+ df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
265
  df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
266
+ df_pred = df_pred[(df_pred[['MkblAmt', 'GrdAmt', 'ByGrdAmt', 'GiaAmt', 'EngCts']] != 0).all(axis=1)]
267
  df_class = df[required_columns_2].fillna("NA").copy()
268
 
269
  # Transform categorical columns for prediction DataFrame using the label encoders.