Update app.py
Browse files
app.py
CHANGED
|
@@ -252,6 +252,8 @@ def predict():
|
|
| 252 |
|
| 253 |
def process_dataframe(df):
|
| 254 |
try:
|
|
|
|
|
|
|
| 255 |
# Define the columns needed for two parts.
|
| 256 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 257 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
|
@@ -261,9 +263,7 @@ def process_dataframe(df):
|
|
| 261 |
|
| 262 |
# Create two DataFrames: one for prediction and one for classification.
|
| 263 |
df_pred = df[required_columns].copy()
|
| 264 |
-
df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
|
| 265 |
-
df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
|
| 266 |
-
df_pred = df_pred[(df_pred[['MkblAmt', 'GrdAmt', 'ByGrdAmt', 'GiaAmt', 'EngCts']] != 0).all(axis=1)]
|
| 267 |
df_class = df[required_columns_2].fillna("NA").copy()
|
| 268 |
|
| 269 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|
|
|
|
| 252 |
|
| 253 |
def process_dataframe(df):
|
| 254 |
try:
|
| 255 |
+
df[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
|
| 256 |
+
|
| 257 |
# Define the columns needed for two parts.
|
| 258 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 259 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
|
|
|
| 263 |
|
| 264 |
# Create two DataFrames: one for prediction and one for classification.
|
| 265 |
df_pred = df[required_columns].copy()
|
| 266 |
+
df_pred = df_pred[(df_pred[['EngCts']] > 0.00).all(axis=1) & (df_pred[['EngCts']] <= 0.99).all(axis=1)]
|
|
|
|
|
|
|
| 267 |
df_class = df[required_columns_2].fillna("NA").copy()
|
| 268 |
|
| 269 |
# Transform categorical columns for prediction DataFrame using the label encoders.
|