WebashalarForML commited on
Commit
10cab27
Β·
verified Β·
1 Parent(s): 5036583

Update README2.md

Browse files
Files changed (1) hide show
  1. README2.md +96 -64
README2.md CHANGED
@@ -1,122 +1,154 @@
1
  # AI-Based Diamond Price Prediction and Classification
2
 
3
- This project aims to predict diamond grading prices, GIA-certified prices, and classification-based changes in diamond attributes using machine learning models. The system processes diamond attributes from engineer plans and provides AI-driven insights into pricing and parameter variations.
4
 
5
  ---
6
 
7
  ## πŸš€ Project Overview
8
 
9
- The goal of this project is to develop an AI-driven pipeline for automating diamond grading and certification price predictions. The system leverages machine learning models to analyze historical diamond data, predict pricing estimates, and provide classification-based recommendations.
 
10
 
11
- ### πŸ”Ή Features:
12
- - Predict **GIA-certified prices** and **grading prices** for diamonds.
13
- - Classify and recommend **potential changes in diamond parameters**.
14
- - Analyze **historical data trends** for better forecasting.
15
- - Provide **real-time AI predictions via a web-based interface**.
 
16
 
17
  ---
18
 
19
- ## πŸ“Œ Problem Statement
20
 
21
- Diamond pricing and grading involve complex, time-consuming manual evaluations. This project automates the process by utilizing **machine learning models** to predict pricing, detect parameter changes, and generate valuable insights for decision-making.
 
 
 
 
 
 
22
 
23
  ---
24
 
25
- ## βš™οΈ Tech Stack
26
 
27
- | Component | Tools & Technologies |
28
- |-----------------|---------------------|
29
- | **Data Collection** | Python (Requests, SQL) |
30
- | **Data Preprocessing** | Pandas, NumPy, Scikit-learn Pipelines |
31
- | **Model Development** | Scikit-learn, XGBoost, LightGBM, TensorFlow/PyTorch |
32
- | **Model Evaluation** | Scikit-learn metrics (RMSE, MAE, RΒ²), Evidently, Prometheus |
33
- | **Deployment** | Flask, FastAPI, Docker |
 
 
 
 
34
 
35
  ---
36
 
37
- ## πŸ›  Setup & Installation
38
 
39
- ### 1️⃣ Create a Virtual Environment
 
 
 
 
 
 
40
  ```bash
41
  python -m venv venv
42
  source venv/bin/activate # On Windows: venv\Scripts\activate
43
  ```
44
 
45
- ### 2️⃣ Install Dependencies
46
  ```bash
47
  pip install -r requirements.txt
48
  ```
49
 
50
- ### 3️⃣ Run the Application
51
  ```bash
52
  python app.py
53
  ```
54
-
55
- OR (if using Docker)
56
- ```bash
57
- docker-compose up --build
58
- ```
59
 
60
  ---
61
 
62
- ## πŸ“Š Application Workflow
63
 
64
- ### **πŸ”Ή Prediction Module**
65
- **Input:** Diamond parameters from engineer plans:
66
- `Tag, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt`
67
-
68
- **Process:**
69
- 1. **Historical Learning:** AI model learns from past diamond data.
70
- 2. **Training:** Identifies patterns linking diamond attributes to final pricing.
71
- 3. **Deployment:** Predicts `GrdAmt, ByGrdAmt, GiaAmt` for new inputs.
72
 
73
- **Output:**
74
- - AI-generated price estimates with **>95% accuracy**.
 
 
 
75
 
76
  ---
77
 
78
- ### **πŸ”Ή Classification Module**
79
- **Input:** Engineer Plan data with additional attributes:
80
- `Tag, EngCts, EngShp, EngQua, EngCol, EngCut, EngPol, EngSym, EngFlo, EngNts, EngMikly, EngLab, EngAmt, Carat, Black_Code, White_Code`
81
 
82
- **Process:**
83
- 1. **AI Model Training:** Learns from past cases where Carat, Black_Code, or White_Code led to different outcomes.
84
- 2. **Alert Generation:** Detects discrepancies in new inputs and suggests corrections.
85
-
86
- **Output:**
87
- - **Alerts and recommendations** for potential adjustments in diamond parameters.
88
 
89
  ---
90
 
91
- ## πŸ“‚ App Structure
92
 
93
  ```
94
  .
95
  β”œβ”€β”€ app.py # Flask application
96
  β”œβ”€β”€ templates/
97
- β”‚ β”œβ”€β”€ index.html # Home page
98
- β”‚ β”œβ”€β”€ output.html # Prediction result display
99
- β”œβ”€β”€ uploads/ # Uploaded diamond datasets
100
- β”œβ”€β”€ Model/ # Trained AI models (joblib)
101
- β”œβ”€β”€ Label_encoders/ # Encoders for categorical variables
102
- β”œβ”€β”€ requirements.txt # Dependencies
103
- β”œβ”€β”€ Dockerfile # Containerization setup
104
- β”œβ”€β”€ README.md # Documentation
 
 
105
  ```
106
 
107
  ---
108
 
109
- ## 🌟 Key Features
110
 
111
- βœ” **GIA Price Prediction** – Estimates diamond grading costs.
112
- βœ” **Parameter Classification** – Identifies changes in carat, shape, and other factors.
113
- βœ” **Real-time AI Predictions** – Instant price estimates based on historical data.
114
- βœ” **User-friendly Web Interface** – Upload diamond data and get instant insights.
115
- βœ” **Downloadable Reports** – Export predictions and analysis as CSV files.
 
 
 
116
 
117
  ---
118
 
119
- ## πŸ›  API Endpoints
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
- | Endpoint | Method | Description |
122
- |----------|--------|-------------
 
1
  # AI-Based Diamond Price Prediction and Classification
2
 
3
+ This project utilizes **machine learning and AI techniques** to predict **diamond grading prices** (GIA-certified prices, grading prices, and bygrading prices) based on various diamond attributes. Additionally, it provides classification-based recommendations for changes in diamond parameters. The system is built using **Flask**, **scikit-learn**, and **XGBoost**, and it is deployed as a web application with a user-friendly interface.
4
 
5
  ---
6
 
7
  ## πŸš€ Project Overview
8
 
9
+ ### Problem Statement
10
+ Manually evaluating diamond prices and certification costs is a **time-consuming and error-prone** task. This project automates the process by leveraging AI models to analyze historical data and provide **accurate predictions and recommendations** based on diamond attributes.
11
 
12
+ ### Key Features
13
+ βœ… **Diamond Price Prediction**: Predicts GIA, grading, and bygrading prices using AI.
14
+ βœ… **Parameter Change Analysis**: Identifies and suggests modifications in diamond attributes.
15
+ βœ… **Automated Data Processing**: Cleans and preprocesses input data for better model accuracy.
16
+ βœ… **Web-Based Interface**: Flask-based UI for easy file uploads and result visualization.
17
+ βœ… **Downloadable Reports**: Users can download CSV reports for predictions and analysis.
18
 
19
  ---
20
 
21
+ ## βš™οΈ Tech Stack
22
 
23
+ | Component | Tools/Technologies Used |
24
+ |---------------|----------------------|
25
+ | **Backend** | Flask, scikit-learn, XGBoost, NumPy, Pandas |
26
+ | **Frontend** | HTML, CSS, Jinja Templates |
27
+ | **Database** | CSV/Excel file-based input |
28
+ | **Deployment** | Docker, Gunicorn |
29
+ | **Machine Learning** | Linear Regression, Decision Trees, Random Forest, K-Nearest Neighbors, XGBoost |
30
 
31
  ---
32
 
33
+ ## πŸ“Œ Project Workflow
34
 
35
+ ### πŸ”Ή Input:
36
+ - Users upload a CSV/Excel file containing **diamond attributes** (Tag, Carat, Shape, Quality, Color, Cut, Polish, Symmetry, Fluorescence, etc.).
37
+
38
+ ### πŸ”Ή Processing:
39
+ - **Prediction Models** estimate GIA prices, grading prices, and bygrading prices.
40
+ - **Classification Models** analyze changes in diamond parameters (e.g., carat, color, cut).
41
+
42
+ ### πŸ”Ή Output:
43
+ - Users receive **predicted values** and **recommendations** based on AI models.
44
+ - Results are displayed in a structured table.
45
+ - Users can **download reports** as CSV files.
46
 
47
  ---
48
 
49
+ ## πŸ› οΈ Setup Instructions
50
 
51
+ ### 1️⃣ Clone the Repository
52
+ ```bash
53
+ git clone https://github.com/your-repo/diamond-price-prediction.git
54
+ cd diamond-price-prediction
55
+ ```
56
+
57
+ ### 2️⃣ Create a Virtual Environment (Optional)
58
  ```bash
59
  python -m venv venv
60
  source venv/bin/activate # On Windows: venv\Scripts\activate
61
  ```
62
 
63
+ ### 3️⃣ Install Dependencies
64
  ```bash
65
  pip install -r requirements.txt
66
  ```
67
 
68
+ ### 4️⃣ Run the Application
69
  ```bash
70
  python app.py
71
  ```
72
+ Visit `http://127.0.0.1:5000` in your browser.
 
 
 
 
73
 
74
  ---
75
 
76
+ ## πŸ“¦ Running with Docker
77
 
78
+ ### 1️⃣ Build the Docker Image
79
+ ```bash
80
+ docker build -t diamond-prediction .
81
+ ```
 
 
 
 
82
 
83
+ ### 2️⃣ Run the Container
84
+ ```bash
85
+ docker run -p 7860:7860 diamond-prediction
86
+ ```
87
+ Now, visit `http://localhost:7860` to use the app.
88
 
89
  ---
90
 
91
+ ## πŸ“œ API Endpoints
 
 
92
 
93
+ | Endpoint | Method | Description |
94
+ |----------|--------|-------------|
95
+ | `/` | GET | Home page |
96
+ | `/predict` | POST | Uploads a CSV/Excel file and predicts diamond prices |
97
+ | `/download_pred` | GET | Downloads prediction results as CSV |
98
+ | `/download_class` | GET | Downloads classification analysis as CSV |
99
 
100
  ---
101
 
102
+ ## πŸ“‚ Project Structure
103
 
104
  ```
105
  .
106
  β”œβ”€β”€ app.py # Flask application
107
  β”œβ”€β”€ templates/
108
+ β”‚ β”œβ”€β”€ index.html # Home page template
109
+ β”‚ β”œβ”€β”€ output.html # Output display template
110
+ β”œβ”€β”€ static/ # CSS and static files
111
+ β”œβ”€β”€ Model/ # Trained ML models (.joblib)
112
+ β”œβ”€β”€ Label_encoders/ # Pretrained label encoders
113
+ β”œβ”€β”€ uploads/ # Uploaded files storage
114
+ β”œβ”€β”€ data/ # Processed data files
115
+ β”œβ”€β”€ requirements.txt # Dependencies list
116
+ β”œβ”€β”€ Dockerfile # Docker setup
117
+ └── README.md # Documentation
118
  ```
119
 
120
  ---
121
 
122
+ ## πŸ“Š Example Use Cases
123
 
124
+ ### 1️⃣ Predicting Diamond Prices
125
+ - Upload a **diamond dataset (CSV/Excel)**.
126
+ - The AI model predicts **GIA price, grading price, and bygrading price**.
127
+ - Download the results as a structured report.
128
+
129
+ ### 2️⃣ Identifying Diamond Parameter Changes
130
+ - AI analyzes changes in **carat, cut, color, and other attributes**.
131
+ - Alerts users to potential modifications in the diamond properties.
132
 
133
  ---
134
 
135
+ ## πŸ” Future Enhancements
136
+ - βœ… Improve model accuracy with deep learning.
137
+ - βœ… Add support for **real-time API integration** with diamond pricing databases.
138
+ - βœ… Extend the system to predict **market trends** using time-series forecasting.
139
+
140
+ ---
141
+
142
+ ## πŸ“œ License
143
+ This project is licensed under the **MIT License**.
144
+
145
+ ---
146
+
147
+ ## πŸ’‘ Credits
148
+ Developed by **Webashlar**, a leading IT company specializing in AI, data science, and software solutions.
149
+
150
+ Happy predicting! πŸ’Žβœ¨
151
+ ```
152
+
153
+ ---
154