Spaces:
Running
Running
Update audio.py
Browse files
audio.py
CHANGED
@@ -1,33 +1,34 @@
|
|
1 |
-
|
2 |
-
# (silences that βno locator availableβ RuntimeError).
|
3 |
-
try:
|
4 |
-
import numba.core.decorators as _nd
|
5 |
-
_nd.JitDispatcher.enable_caching = lambda self: None
|
6 |
-
except Exception:
|
7 |
-
pass
|
8 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
9 |
-
|
10 |
-
import librosa
|
11 |
-
import librosa.filters
|
12 |
import numpy as np
|
13 |
-
# import tensorflow as tf
|
14 |
-
from scipy import signal
|
15 |
from scipy.io import wavfile
|
|
|
|
|
16 |
from hparams import hparams as hp
|
17 |
|
18 |
def load_wav(path, sr):
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
#proposed by @dsmiller
|
27 |
-
wavfile.write(path, sr, wav.astype(np.int16))
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def preemphasis(wav, k, preemphasize=True):
|
33 |
if preemphasize:
|
@@ -49,18 +50,14 @@ def get_hop_size():
|
|
49 |
def linearspectrogram(wav):
|
50 |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
51 |
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
52 |
-
|
53 |
-
if hp.signal_normalization
|
54 |
-
return _normalize(S)
|
55 |
-
return S
|
56 |
|
57 |
def melspectrogram(wav):
|
58 |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
59 |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
60 |
-
|
61 |
-
if hp.signal_normalization
|
62 |
-
return _normalize(S)
|
63 |
-
return S
|
64 |
|
65 |
def _lws_processor():
|
66 |
import lws
|
@@ -68,15 +65,12 @@ def _lws_processor():
|
|
68 |
|
69 |
def _stft(y):
|
70 |
if hp.use_lws:
|
71 |
-
return _lws_processor(
|
72 |
else:
|
|
|
73 |
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
74 |
|
75 |
-
##########################################################
|
76 |
-
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
77 |
def num_frames(length, fsize, fshift):
|
78 |
-
"""Compute number of time frames of spectrogram
|
79 |
-
"""
|
80 |
pad = (fsize - fshift)
|
81 |
if length % fshift == 0:
|
82 |
M = (length + pad * 2 - fsize) // fshift + 1
|
@@ -84,40 +78,41 @@ def num_frames(length, fsize, fshift):
|
|
84 |
M = (length + pad * 2 - fsize) // fshift + 2
|
85 |
return M
|
86 |
|
87 |
-
|
88 |
def pad_lr(x, fsize, fshift):
|
89 |
-
"""Compute left and right padding
|
90 |
-
"""
|
91 |
M = num_frames(len(x), fsize, fshift)
|
92 |
pad = (fsize - fshift)
|
93 |
T = len(x) + 2 * pad
|
94 |
r = (M - 1) * fshift + fsize - T
|
95 |
return pad, pad + r
|
96 |
-
|
97 |
-
#Librosa correct padding
|
98 |
def librosa_pad_lr(x, fsize, fshift):
|
99 |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
100 |
|
101 |
-
# Conversions
|
102 |
_mel_basis = None
|
103 |
|
104 |
-
def _linear_to_mel(
|
105 |
global _mel_basis
|
106 |
if _mel_basis is None:
|
107 |
_mel_basis = _build_mel_basis()
|
108 |
-
return np.dot(_mel_basis,
|
109 |
|
110 |
def _build_mel_basis():
|
|
|
111 |
assert hp.fmax <= hp.sample_rate // 2
|
112 |
-
return librosa.filters.mel(
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def _amp_to_db(x):
|
116 |
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
117 |
return 20 * np.log10(np.maximum(min_level, x))
|
118 |
|
119 |
def _db_to_amp(x):
|
120 |
-
return np.power(10.0,
|
121 |
|
122 |
def _normalize(S):
|
123 |
if hp.allow_clipping_in_normalization:
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
|
|
|
|
3 |
from scipy.io import wavfile
|
4 |
+
from scipy import signal
|
5 |
+
import resampy
|
6 |
from hparams import hparams as hp
|
7 |
|
8 |
def load_wav(path, sr):
|
9 |
+
"""
|
10 |
+
Load a WAV file and resample it using scipy + resampy.
|
11 |
+
"""
|
12 |
+
orig_sr, audio = wavfile.read(path)
|
13 |
|
14 |
+
# Normalize if needed
|
15 |
+
if audio.dtype.kind == 'i':
|
16 |
+
max_val = np.iinfo(audio.dtype).max
|
17 |
+
audio = audio.astype(np.float32) / max_val
|
18 |
+
else:
|
19 |
+
audio = audio.astype(np.float32)
|
20 |
|
21 |
+
if orig_sr != sr:
|
22 |
+
audio = resampy.resample(audio, orig_sr, sr)
|
|
|
|
|
23 |
|
24 |
+
return audio
|
25 |
+
|
26 |
+
def save_wav(wav, path, sr):
|
27 |
+
"""
|
28 |
+
Save a float32 waveform to disk as 16-bit PCM WAV.
|
29 |
+
"""
|
30 |
+
wav_int16 = (wav * 32767).clip(-32767, 32767).astype(np.int16)
|
31 |
+
wavfile.write(path, sr, wav_int16)
|
32 |
|
33 |
def preemphasis(wav, k, preemphasize=True):
|
34 |
if preemphasize:
|
|
|
50 |
def linearspectrogram(wav):
|
51 |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
52 |
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
53 |
+
|
54 |
+
return _normalize(S) if hp.signal_normalization else S
|
|
|
|
|
55 |
|
56 |
def melspectrogram(wav):
|
57 |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
58 |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
59 |
+
|
60 |
+
return _normalize(S) if hp.signal_normalization else S
|
|
|
|
|
61 |
|
62 |
def _lws_processor():
|
63 |
import lws
|
|
|
65 |
|
66 |
def _stft(y):
|
67 |
if hp.use_lws:
|
68 |
+
return _lws_processor().stft(y).T
|
69 |
else:
|
70 |
+
import librosa # Safe to import inside function
|
71 |
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
72 |
|
|
|
|
|
73 |
def num_frames(length, fsize, fshift):
|
|
|
|
|
74 |
pad = (fsize - fshift)
|
75 |
if length % fshift == 0:
|
76 |
M = (length + pad * 2 - fsize) // fshift + 1
|
|
|
78 |
M = (length + pad * 2 - fsize) // fshift + 2
|
79 |
return M
|
80 |
|
|
|
81 |
def pad_lr(x, fsize, fshift):
|
|
|
|
|
82 |
M = num_frames(len(x), fsize, fshift)
|
83 |
pad = (fsize - fshift)
|
84 |
T = len(x) + 2 * pad
|
85 |
r = (M - 1) * fshift + fsize - T
|
86 |
return pad, pad + r
|
87 |
+
|
|
|
88 |
def librosa_pad_lr(x, fsize, fshift):
|
89 |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
90 |
|
|
|
91 |
_mel_basis = None
|
92 |
|
93 |
+
def _linear_to_mel(spectrogram):
|
94 |
global _mel_basis
|
95 |
if _mel_basis is None:
|
96 |
_mel_basis = _build_mel_basis()
|
97 |
+
return np.dot(_mel_basis, spectrogram)
|
98 |
|
99 |
def _build_mel_basis():
|
100 |
+
import librosa.filters # Imported only when needed
|
101 |
assert hp.fmax <= hp.sample_rate // 2
|
102 |
+
return librosa.filters.mel(
|
103 |
+
sr=hp.sample_rate,
|
104 |
+
n_fft=hp.n_fft,
|
105 |
+
n_mels=hp.num_mels,
|
106 |
+
fmin=hp.fmin,
|
107 |
+
fmax=hp.fmax
|
108 |
+
)
|
109 |
|
110 |
def _amp_to_db(x):
|
111 |
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
112 |
return 20 * np.log10(np.maximum(min_level, x))
|
113 |
|
114 |
def _db_to_amp(x):
|
115 |
+
return np.power(10.0, x * 0.05)
|
116 |
|
117 |
def _normalize(S):
|
118 |
if hp.allow_clipping_in_normalization:
|