Spaces:
Sleeping
Sleeping
File size: 9,009 Bytes
1e216a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from flask import Flask, render_template, request, redirect, url_for
import pandas as pd
import numpy as np
import joblib
import requests
from keras.models import model_from_json
import folium
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import os
from collections import defaultdict
app = Flask(__name__)
# Load model and scalers
def load_model(name):
with open(f"{name}.json", "r") as json_file:
loaded_model_json = json_file.read()
model = model_from_json(loaded_model_json)
model.load_weights(f"{name}.weights.h5")
return model
model = load_model("FUTURE_AQI_v1")
scaler_X = joblib.load('scaler_X_cpcb_4.pkl')
scaler_y = joblib.load('scaler_y_cpcb_4.pkl')
API_KEY = "26daca1b78f44099a755b921be4bfcf1"
@app.route('/')
def index():
return render_template('index.html')
@app.route('/forecast', methods=['POST'])
def forecast():
# Get user input
latitude = float(request.form['latitude'])
longitude = float(request.form['longitude'])
# Fetch current AQI from API
current_url = f"https://api.weatherbit.io/v2.0/current/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
response = requests.get(current_url)
if response.status_code == 200:
current_data = response.json()['data'][0]
# Prepare input for the model
now = pd.to_datetime("now")
input_data = pd.DataFrame([{
'PM2.5': current_data['pm25'],
'PM10': current_data['pm10'],
'NO2': current_data['no2'],
'SO2': current_data['so2'],
'CO': current_data['co'],
'AQI': current_data['aqi'],
'Day': now.day,
'Month': now.month,
'Hour': now.hour
}])
# Scale and predict
input_scaled = scaler_X.transform(input_data)
predictions = model.predict(input_scaled)
predictions_actual = scaler_y.inverse_transform(predictions)
# Fetch forecasted AQI from API
forecast_url = f"https://api.weatherbit.io/v2.0/forecast/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
response = requests.get(forecast_url)
forecast_data = response.json()['data']
grouped_aqi = defaultdict(list)
for entry in forecast_data:
date = entry['datetime'].split(':')[0]
grouped_aqi[date].append(entry['aqi'])
api_predictions = {date: max(values) for date, values in grouped_aqi.items()}
# Save results to CSV
forecast_df = pd.DataFrame([{
**input_data.iloc[0],
'lat': latitude,
'lon': longitude,
'AQI_step_1': predictions_actual[0, 0],
'AQI_step_2': predictions_actual[0, 1],
'AQI_step_3': predictions_actual[0, 2]
}])
forecast_df.to_csv('aqi_data.csv', mode='a', header=False, index=False)
api_df = pd.DataFrame([{
'AQI_currrent_API': current_data['aqi'],
'AQI_step_1_API': api_predictions.get(list(api_predictions.keys())[0], None),
'AQI_step_2_API': api_predictions.get(list(api_predictions.keys())[1], None),
'AQI_step_3_API': api_predictions.get(list(api_predictions.keys())[2], None)
}])
api_df.to_csv('aqi_data_actual_api.csv', mode='a', header=False, index=False)
# Generate updated map and return
generate_map()
return redirect(url_for('result'))
@app.route('/result')
def result():
return render_template('result.html')
def generate_map():
# Load data
df1 = pd.read_csv('aqi_data.csv')
df2 = pd.read_csv('aqi_data_actual_api.csv')
data = pd.concat([df1, df2], axis=1)
# Create Folium map
# Create the Folium map
map_center = [data['lat'].mean(), data['lon'].mean()]
m = folium.Map(location=map_center, zoom_start=10)
# AQI Color Legend
legend_html = """
<div style="
position: fixed;
bottom: 20px; left: 20px; width: 350px; height: 225px;
background-color: white;
z-index:9999; font-size:14px; border:2px solid grey;
padding: 10px; overflow-y: auto;">
<b>AQI Color Legend</b>
<table style="width: 100%; border-collapse: collapse; text-align: left;">
<thead>
<tr style="border-bottom: 2px solid grey;">
<th style="padding: 5px;">Color</th>
<th style="padding: 5px;">Remark</th>
<th style="padding: 5px;">Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><i style="background:green; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Good</td>
<td>0-50</td>
</tr>
<tr>
<td><i style="background:yellow; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Moderate</td>
<td>51-100</td>
</tr>
<tr>
<td><i style="background:orange; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Unhealthy for Sensitive Groups</td>
<td>101-150</td>
</tr>
<tr>
<td><i style="background:red; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Unhealthy</td>
<td>151-200</td>
</tr>
<tr>
<td><i style="background:purple; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Very Unhealthy</td>
<td>201-300</td>
</tr>
<tr>
<td><i style="background:maroon; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>
<td>Hazardous</td>
<td>301+</td>
</tr>
</tbody>
</table>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
for _, row in data.iterrows():
popup_html = create_plot(row)
color = get_color_for_aqi(row['AQI_step_1'])
folium.Marker(
location=[row["lat"], row["lon"]],
popup=folium.Popup(html=popup_html, max_width=500),
icon=folium.Icon(color=color)
).add_to(m)
# Save the map
m.save('static/aqi_forecast_with_legend.html')
def create_plot(data):
# Bar plot generation logic (same as before)
fig, ax = plt.subplots(figsize=(5, 2))
categories = ['DAY 1', 'DAY 2', 'DAY 3']
actual_values = [data['AQI_step_1'], data['AQI_step_2'], data['AQI_step_3']]
api_values = [data['AQI_step_1_API'], data['AQI_step_2_API'], data['AQI_step_3_API']]
bar_width = 0.35
index = range(len(categories))
# Plot horizontal bars
bars_actual = ax.barh(index, actual_values, bar_width, label="Model AQI", color='blue')
bars_api = ax.barh([i + bar_width for i in index], api_values, bar_width, label="API AQI", color='green')
# Add values to each bar
max_value = 0 # Track the maximum value for axis limit adjustment
for bar in bars_actual:
value = bar.get_width()
ax.text(value + 2, bar.get_y() + bar.get_height() / 2,
f'{value:.1f}', va='center', fontsize=10)
max_value = max(max_value, value)
for bar in bars_api:
value = bar.get_width()
ax.text(value + 2, bar.get_y() + bar.get_height() / 2,
f'{value:.1f}', va='center', fontsize=10)
max_value = max(max_value, value)
# Adjust x-axis limits to accommodate annotations
ax.set_xlim(0, max_value * 1.2)
# Customize y-ticks and labels
ax.set_yticks([i + bar_width / 2 for i in index])
ax.set_yticklabels(categories)
ax.set_xlabel('AQI')
ax.set_title('AQI Comparison')
# Place legend outside the plot area
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)
plt.tight_layout()
# Save the plot to a PNG image in memory
buffer = BytesIO()
plt.savefig(buffer, format="png", bbox_inches='tight')
plt.close(fig)
buffer.seek(0)
# Encode the image to base64 to embed it in the HTML
image_base64 = base64.b64encode(buffer.read()).decode()
return f'<img src="data:image/png;base64,{image_base64}">'
def get_color_for_aqi(aqi_value):
# Color logic (same as before)
if aqi_value <= 50:
return 'green'
elif aqi_value <= 100:
return 'yellow'
elif aqi_value <= 150:
return 'orange'
elif aqi_value <= 200:
return 'red'
elif aqi_value <= 300:
return 'purple'
else:
return 'maroon'
if __name__ == '__main__':
app.run(debug=True)
|