Spaces:
Sleeping
Sleeping
File size: 8,805 Bytes
1e216a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from flask import Flask, render_template, request, redirect, url_for
import pandas as pd
import numpy as np
import joblib
import requests
from keras.models import model_from_json
import folium
from collections import defaultdict
import matplotlib
matplotlib.use('Agg') # Use non-GUI backend
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import branca
app = Flask(__name__)
# Load model and scalers
def load_model(name):
with open(f"{name}.json", "r") as json_file:
loaded_model_json = json_file.read()
model = model_from_json(loaded_model_json)
model.load_weights(f"{name}.weights.h5")
return model
model = load_model("FUTURE_AQI_v1")
scaler_X = joblib.load('scaler_X_cpcb_4.pkl')
scaler_y = joblib.load('scaler_y_cpcb_4.pkl')
API_KEY = "26daca1b78f44099a755b921be4bfcf1"
# Route to display the form and the map
@app.route('/', methods=['GET', 'POST'])
def index():
map_html = generate_map()
if request.method == 'POST':
# Get user input from form
latitude = float(request.form['latitude'])
longitude = float(request.form['longitude'])
# Fetch current AQI from API
current_url = f"https://api.weatherbit.io/v2.0/current/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
response = requests.get(current_url)
if response.status_code == 200:
current_data = response.json()['data'][0]
# Prepare input for the model
now = pd.to_datetime("now")
input_data = pd.DataFrame([{
'PM2.5': current_data['pm25'],
'PM10': current_data['pm10'],
'NO2': current_data['no2'],
'SO2': current_data['so2'],
'CO': current_data['co'],
'AQI': current_data['aqi'],
'Day': now.day,
'Month': now.month,
'Hour': now.hour
}])
# Scale and predict
input_scaled = scaler_X.transform(input_data)
predictions = model.predict(input_scaled)
predictions_actual = scaler_y.inverse_transform(predictions)
# Save results to CSV
forecast_df = pd.DataFrame([{
**input_data.iloc[0],
'lat': latitude,
'lon': longitude,
'AQI_step_1': predictions_actual[0, 0],
'AQI_step_2': predictions_actual[0, 1],
'AQI_step_3': predictions_actual[0, 2]
}])
forecast_df.to_csv('aqi_data.csv', mode='a', header=False, index=False)
# Generate the updated map
map_html = generate_map()
return render_template('aqi_forecast_with_legend.html', map_html=map_html)
# Route to handle the forecast data submission and AQI prediction
@app.route('/forecast', methods=['POST'])
def forecast():
# Get user input from form
latitude = float(request.form['latitude'])
longitude = float(request.form['longitude'])
# Fetch current AQI from API
current_url = f"https://api.weatherbit.io/v2.0/current/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
response = requests.get(current_url)
if response.status_code == 200:
current_data = response.json()['data'][0]
# Prepare input for the model
now = pd.to_datetime("now")
input_data = pd.DataFrame([{
'PM2.5': current_data['pm25'],
'PM10': current_data['pm10'],
'NO2': current_data['no2'],
'SO2': current_data['so2'],
'CO': current_data['co'],
'AQI': current_data['aqi'],
'Day': now.day,
'Month': now.month,
'Hour': now.hour
}])
# Scale and predict
input_scaled = scaler_X.transform(input_data)
predictions = model.predict(input_scaled)
predictions_actual = scaler_y.inverse_transform(predictions)
# Fetch forecasted AQI from API
forecast_url = f"https://api.weatherbit.io/v2.0/forecast/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
response = requests.get(forecast_url)
forecast_data = response.json()['data']
# Group AQI data by date
grouped_aqi = defaultdict(list)
for entry in forecast_data:
date = entry['datetime'].split(':')[0]
grouped_aqi[date].append(entry['aqi'])
# Get the maximum AQI forecasted for the next days
api_predictions = {date: max(values) for date, values in grouped_aqi.items()}
# Save the forecasted AQI results to CSV
api_df = pd.DataFrame([{
'AQI_currrent_API': current_data['aqi'],
'AQI_step_1_API': api_predictions.get(list(api_predictions.keys())[0], None),
'AQI_step_2_API': api_predictions.get(list(api_predictions.keys())[1], None),
'AQI_step_3_API': api_predictions.get(list(api_predictions.keys())[2], None)
}])
api_df.to_csv('aqi_data_actual_api.csv', mode='a', header=False, index=False)
# Save the predicted results to CSV
forecast_df = pd.DataFrame([{
**input_data.iloc[0],
'lat': latitude,
'lon': longitude,
'AQI_step_1': predictions_actual[0, 0],
'AQI_step_2': predictions_actual[0, 1],
'AQI_step_3': predictions_actual[0, 2]
}])
forecast_df.to_csv('aqi_data.csv', mode='a', header=False, index=False)
# Generate the updated map
map_html = generate_map()
return render_template('aqi_forecast_with_legend.html', map_html=map_html)
def generate_map(output_file='templates/aqi_forecast_with_legend.html'):
# Load data
df1 = pd.read_csv('aqi_data.csv', on_bad_lines='skip')
df2 = pd.read_csv('aqi_data_actual_api.csv', on_bad_lines='skip')
data = pd.concat([df1, df2], axis=1)
# Create Folium map
map_center = [data['lat'].mean(), data['lon'].mean()]
m = folium.Map(location=map_center, zoom_start=10)
# Add AQI data points
for _, row in data.iterrows():
popup_html = create_plot(row)
color = get_color_for_aqi(row['AQI_step_1'])
if color: # Ensure a valid color is returned
folium.Marker(
location=[row["lat"], row["lon"]],
popup=folium.Popup(html=popup_html, max_width=500),
icon=folium.Icon(color=color)
).add_to(m)
# Return map as an HTML string
map_html = m._repr_html_()
# Save the map
#m.save(output_file)
return map_html
def get_color_for_aqi(aqi_value):
if aqi_value <= 50:
return 'green'
elif aqi_value <= 100:
return 'lightgreen'
elif aqi_value <= 150:
return 'orange'
elif aqi_value <= 200:
return 'red'
elif aqi_value <= 300:
return 'purple'
else:
return 'gray' # Supported Folium color
def create_plot(data):
fig, ax = plt.subplots(figsize=(5, 2))
categories = ['DAY 1', 'DAY 2', 'DAY 3']
actual_values = [data['AQI_step_1'], data['AQI_step_2'], data['AQI_step_3']]
api_values = [data['AQI_step_1_API'], data['AQI_step_2_API'], data['AQI_step_3_API']]
bar_width = 0.35
index = range(len(categories))
# Plot horizontal bars
bars_actual = ax.barh(index, actual_values, bar_width, label="Model AQI", color='blue')
bars_api = ax.barh([i + bar_width for i in index], api_values, bar_width, label="API AQI", color='green')
# Add values to each bar
max_value = 0 # Track the maximum value for axis limit adjustment
for bar in bars_actual:
value = bar.get_width()
ax.text(value + 2, bar.get_y() + bar.get_height() / 2,
f'{value:.1f}', va='center', fontsize=10)
max_value = max(max_value, value)
for bar in bars_api:
value = bar.get_width()
ax.text(value + 2, bar.get_y() + bar.get_height() / 2,
f'{value:.1f}', va='center', fontsize=10)
max_value = max(max_value, value)
# Adjust x-axis limits to accommodate annotations
ax.set_xlim(0, max_value * 1.2)
# Customize y-ticks and labels
ax.set_yticks([i + bar_width / 2 for i in index])
ax.set_yticklabels(categories)
ax.set_xlabel('AQI')
ax.set_title('AQI Comparison')
# Place legend outside the plot area
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)
plt.tight_layout()
# Save the plot to a PNG image in memory
buffer = BytesIO()
plt.savefig(buffer, format="png", bbox_inches='tight')
plt.close(fig)
buffer.seek(0)
# Encode the image to base64 to embed it in the HTML
image_base64 = base64.b64encode(buffer.read()).decode()
return f'<img src="data:image/png;base64,{image_base64}">'
if __name__ == '__main__':
app.run(debug=True)
|