File size: 9,009 Bytes
1e216a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from flask import Flask, render_template, request, redirect, url_for
import pandas as pd
import numpy as np
import joblib
import requests
from keras.models import model_from_json
import folium
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import os
from collections import defaultdict

app = Flask(__name__)

# Load model and scalers
def load_model(name):
    with open(f"{name}.json", "r") as json_file:
        loaded_model_json = json_file.read()
    model = model_from_json(loaded_model_json)
    model.load_weights(f"{name}.weights.h5")
    return model

model = load_model("FUTURE_AQI_v1")
scaler_X = joblib.load('scaler_X_cpcb_4.pkl')
scaler_y = joblib.load('scaler_y_cpcb_4.pkl')

API_KEY = "26daca1b78f44099a755b921be4bfcf1"

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/forecast', methods=['POST'])
def forecast():
    # Get user input
    latitude = float(request.form['latitude'])
    longitude = float(request.form['longitude'])

    # Fetch current AQI from API
    current_url = f"https://api.weatherbit.io/v2.0/current/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
    response = requests.get(current_url)
    if response.status_code == 200:
        current_data = response.json()['data'][0]

    # Prepare input for the model
    now = pd.to_datetime("now")
    input_data = pd.DataFrame([{
        'PM2.5': current_data['pm25'],
        'PM10': current_data['pm10'],
        'NO2': current_data['no2'],
        'SO2': current_data['so2'],
        'CO': current_data['co'],
        'AQI': current_data['aqi'],
        'Day': now.day,
        'Month': now.month,
        'Hour': now.hour
    }])

    # Scale and predict
    input_scaled = scaler_X.transform(input_data)
    predictions = model.predict(input_scaled)
    predictions_actual = scaler_y.inverse_transform(predictions)

    # Fetch forecasted AQI from API
    forecast_url = f"https://api.weatherbit.io/v2.0/forecast/airquality?lat={latitude}&lon={longitude}&key={API_KEY}"
    response = requests.get(forecast_url)
    forecast_data = response.json()['data']

    grouped_aqi = defaultdict(list)
    for entry in forecast_data:
        date = entry['datetime'].split(':')[0]
        grouped_aqi[date].append(entry['aqi'])

    api_predictions = {date: max(values) for date, values in grouped_aqi.items()}

    # Save results to CSV
    forecast_df = pd.DataFrame([{
        **input_data.iloc[0],
        'lat': latitude,
        'lon': longitude,
        'AQI_step_1': predictions_actual[0, 0],
        'AQI_step_2': predictions_actual[0, 1],
        'AQI_step_3': predictions_actual[0, 2]
    }])
    forecast_df.to_csv('aqi_data.csv', mode='a', header=False, index=False)

    api_df = pd.DataFrame([{
        'AQI_currrent_API': current_data['aqi'],
        'AQI_step_1_API': api_predictions.get(list(api_predictions.keys())[0], None),
        'AQI_step_2_API': api_predictions.get(list(api_predictions.keys())[1], None),
        'AQI_step_3_API': api_predictions.get(list(api_predictions.keys())[2], None)
    }])
    api_df.to_csv('aqi_data_actual_api.csv', mode='a', header=False, index=False)

    # Generate updated map and return
    generate_map()
    return redirect(url_for('result'))

@app.route('/result')
def result():
    return render_template('result.html')

def generate_map():
    # Load data
    df1 = pd.read_csv('aqi_data.csv')
    df2 = pd.read_csv('aqi_data_actual_api.csv')
    data = pd.concat([df1, df2], axis=1)

    # Create Folium map
    # Create the Folium map
    map_center = [data['lat'].mean(), data['lon'].mean()]
    m = folium.Map(location=map_center, zoom_start=10)

    # AQI Color Legend
    legend_html = """

    <div style="

        position: fixed; 

        bottom: 20px; left: 20px; width: 350px; height: 225px; 

        background-color: white; 

        z-index:9999; font-size:14px; border:2px solid grey; 

        padding: 10px; overflow-y: auto;">

        <b>AQI Color Legend</b>

        <table style="width: 100%; border-collapse: collapse; text-align: left;">

            <thead>

                <tr style="border-bottom: 2px solid grey;">

                    <th style="padding: 5px;">Color</th>

                    <th style="padding: 5px;">Remark</th>

                    <th style="padding: 5px;">Range</th>

                </tr>

            </thead>

            <tbody>

                <tr>

                    <td><i style="background:green; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Good</td>

                    <td>0-50</td>

                </tr>

                <tr>

                    <td><i style="background:yellow; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Moderate</td>

                    <td>51-100</td>

                </tr>

                <tr>

                    <td><i style="background:orange; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Unhealthy for Sensitive Groups</td>

                    <td>101-150</td>

                </tr>

                <tr>

                    <td><i style="background:red; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Unhealthy</td>

                    <td>151-200</td>

                </tr>

                <tr>

                    <td><i style="background:purple; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Very Unhealthy</td>

                    <td>201-300</td>

                </tr>

                <tr>

                    <td><i style="background:maroon; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                    <td>Hazardous</td>

                    <td>301+</td>

                </tr>

            </tbody>

        </table>

    </div>

    """
    m.get_root().html.add_child(folium.Element(legend_html))
    
    for _, row in data.iterrows():
        popup_html = create_plot(row)
        color = get_color_for_aqi(row['AQI_step_1'])
        folium.Marker(
            location=[row["lat"], row["lon"]],
            popup=folium.Popup(html=popup_html, max_width=500),
            icon=folium.Icon(color=color)
        ).add_to(m)

    # Save the map
    m.save('static/aqi_forecast_with_legend.html')

def create_plot(data):
    # Bar plot generation logic (same as before)
    fig, ax = plt.subplots(figsize=(5, 2))
    categories = ['DAY 1', 'DAY 2', 'DAY 3']
    actual_values = [data['AQI_step_1'], data['AQI_step_2'], data['AQI_step_3']]
    api_values = [data['AQI_step_1_API'], data['AQI_step_2_API'], data['AQI_step_3_API']]

    bar_width = 0.35
    index = range(len(categories))

    # Plot horizontal bars
    bars_actual = ax.barh(index, actual_values, bar_width, label="Model AQI", color='blue')
    bars_api = ax.barh([i + bar_width for i in index], api_values, bar_width, label="API AQI", color='green')

    # Add values to each bar
    max_value = 0  # Track the maximum value for axis limit adjustment
    for bar in bars_actual:
        value = bar.get_width()
        ax.text(value + 2, bar.get_y() + bar.get_height() / 2, 
                f'{value:.1f}', va='center', fontsize=10)
        max_value = max(max_value, value)
    for bar in bars_api:
        value = bar.get_width()
        ax.text(value + 2, bar.get_y() + bar.get_height() / 2, 
                f'{value:.1f}', va='center', fontsize=10)
        max_value = max(max_value, value)

    # Adjust x-axis limits to accommodate annotations
    ax.set_xlim(0, max_value * 1.2)

    # Customize y-ticks and labels
    ax.set_yticks([i + bar_width / 2 for i in index])
    ax.set_yticklabels(categories)
    ax.set_xlabel('AQI')
    ax.set_title('AQI Comparison')

    # Place legend outside the plot area
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

    plt.tight_layout()

    # Save the plot to a PNG image in memory
    buffer = BytesIO()
    plt.savefig(buffer, format="png", bbox_inches='tight')
    plt.close(fig)
    buffer.seek(0)

    # Encode the image to base64 to embed it in the HTML
    image_base64 = base64.b64encode(buffer.read()).decode()
    return f'<img src="data:image/png;base64,{image_base64}">'

def get_color_for_aqi(aqi_value):
    # Color logic (same as before)
    if aqi_value <= 50:
        return 'green'
    elif aqi_value <= 100:
        return 'yellow'
    elif aqi_value <= 150:
        return 'orange'
    elif aqi_value <= 200:
        return 'red'
    elif aqi_value <= 300:
        return 'purple'
    else:
        return 'maroon'

if __name__ == '__main__':
    app.run(debug=True)