Spaces:
Sleeping
Sleeping
File size: 10,655 Bytes
1e216a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import matplotlib
matplotlib.use('Agg') # Set non-GUI backend for Matplotlib
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from flask import Flask, render_template, request
from keras.models import model_from_json
import folium
import json
import requests
from pathlib import Path
from io import BytesIO
import base64
app = Flask(__name__)
# Load the model
def load_model(name):
with open(f"{name}.json", "r") as json_file:
loaded_model_json = json_file.read()
loaded_model = model_from_json(loaded_model_json)
weights_file = f"{name}.weights.h5"
if not Path(weights_file).is_file():
raise FileNotFoundError(f"Weight file {weights_file} not found.")
loaded_model.load_weights(weights_file)
print("Loaded model from disk")
return loaded_model
#MAP CREATING
# Function to create map
def create_map(df, predicted_wind_speed, map_file):
# Extract latitude, longitude, and actual wind speed
latitude = df['lat'].iloc[0]
longitude = df['lon'].iloc[0]
actual_wind_speed = df['wind_kph'].iloc[0]
# Ensure single numeric values for plotting
if isinstance(actual_wind_speed, (list, np.ndarray)):
actual_wind_speed = actual_wind_speed[0]
if isinstance(predicted_wind_speed, (list, np.ndarray)):
predicted_wind_speed = predicted_wind_speed[0]
# Create folium map
m = folium.Map(location=[latitude, longitude], zoom_start=10)
# Create a bar chart comparing actual and predicted wind speeds
fig, ax = plt.subplots(figsize=(3, 3))
bars = ax.bar(['Actual', 'Predicted'], [actual_wind_speed, predicted_wind_speed], color=['blue', 'green'])
ax.set_ylabel('Wind Speed (km/h)')
ax.set_title('Wind Speed Comparison')
# Add labels inside each bar
for bar in bars:
yval = bar.get_height() # Get the height of each bar (wind speed value)
# Position the label inside the bar, slightly adjusted to avoid overlap with the top
ax.text(bar.get_x() + bar.get_width() / 2, yval / 2, round(yval, 2), ha='center', va='center', color='white')
# Adjust layout
plt.tight_layout()
# Save chart to a BytesIO buffer in PNG format and encode to base64
buffer = BytesIO()
plt.savefig(buffer, format="png")
plt.close(fig)
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
# HTML for the popup with base64 image
popup_html = f'<img src="data:image/png;base64,{image_base64}" alt="Wind Speed Comparison">'
popup = folium.Popup(html=popup_html, max_width=300)
# Add a marker to the map with popup containing the chart
folium.Marker(
location=[latitude, longitude],
popup=popup,
tooltip=df['location'].iloc[0]
).add_to(m)
# Save the folium map as an HTML file
m.save(map_file)
model = load_model('Wind_Model_New_v1')
# Route to input form
@app.route('/')
def index():
return render_template('index.html')
# Prediction route
@app.route('/predict', methods=['POST'])
def predict():
latitude = float(request.form['latitude'])
longitude = float(request.form['longitude'])
api_key = "846ca0bb2fa144cdb7195352240711"
base_url = "http://api.weatherapi.com/v1/current.json"
params = {"key": api_key, "q": f"{latitude},{longitude}"}
response = requests.get(base_url, params=params)
if response.status_code == 200:
current_weather = response.json()
extracted_data = {
'location': current_weather['location']['name'],
'lat': latitude,
'lon': longitude,
'date': current_weather['location']['localtime'].split()[0],
'time': current_weather['location']['localtime'],
'temp_c': current_weather['current']['temp_c'],
'temp_f': current_weather['current']['temp_f'],
'is_day': current_weather['current']['is_day'],
'condition': current_weather['current']['condition']['text'],
'wind_mph': current_weather['current']['wind_mph'],
'wind_kph': current_weather['current']['wind_kph'],
'humidity': current_weather['current']['humidity'],
'cloud': current_weather['current']['cloud'],
'feelslike_c': current_weather['current']['feelslike_c'],
'feelslike_f': current_weather['current']['feelslike_f'],
'windchill_c': current_weather['current']['windchill_c'],
'windchill_f': current_weather['current']['windchill_f'],
'heatindex_c': current_weather['current']['heatindex_c'],
'heatindex_f': current_weather['current']['heatindex_f'],
'dewpoint_c': current_weather['current']['dewpoint_c'],
'dewpoint_f': current_weather['current']['dewpoint_f'],
'vis_km': current_weather['current']['vis_km'],
'vis_miles': current_weather['current']['vis_miles'],
'gust_mph': current_weather['current']['gust_mph'],
'gust_kph': current_weather['current']['gust_kph'],
'uv': current_weather['current']['uv']
}
df = pd.DataFrame([extracted_data])
print("dataframe",df)
df['time'] = pd.to_datetime(df['time'])
df['day'] = df['time'].dt.day
df['month'] = df['time'].dt.month
df['hour'] = df['time'].dt.hour
dx=df[['temp_c', 'temp_f', 'is_day','wind_mph', 'wind_kph', 'humidity', 'cloud', 'feelslike_c',
'feelslike_f', 'windchill_c', 'windchill_f', 'heatindex_c','heatindex_f', 'dewpoint_c',
'dewpoint_f', 'vis_km', 'vis_miles','gust_mph', 'gust_kph', 'uv', 'day', 'month', 'hour']]
x=dx.drop(['wind_mph', 'wind_kph'],axis=1)
x_unk = np.array(x)
x_unk = x_unk / 100
predictions = model.predict(x_unk)
predicted_wind_speed = predictions[0][0]
print("predictions",predictions)
map_file = "static/multiple_wind_speed_map.html"
create_map(df, predicted_wind_speed, map_file)
return render_template('results.html',
actual=df['wind_kph'][0],
predicted=predicted_wind_speed,
map_file='multiple_wind_speed_map.html')
else:
return "Failed to retrieve weather data."
# forcast
@app.route('/forcast', methods=['POST'])
def forcast():
latitude = float(request.form['latitude'])
longitude = float(request.form['longitude'])
api_key = "846ca0bb2fa144cdb7195352240711"
base_url = "http://api.weatherapi.com/v1/forecast.json"
params = {
"key": api_key,
"q": f"{latitude},{longitude}",
"days": 1 # Fetch forecast for 1 day
}
response = requests.get(base_url, params=params)
extracted_data = {}
if response.status_code == 200:
data = response.json()
for location in data:
location_name = data['location']['name']
forecast_days = data['forecast']['forecastday']
# Loop through each day in forecastdays
for day in forecast_days:
date = day['date']
hours = day['hour']
# Extract hourly data for each hour
for hour_data in hours:
# Add extra details (date, location) for each hourly data
extracted_data={
"location": location_name,
"lat": latitude,
"lon": longitude,
"date": date,
"time": hour_data["time"],
"temp_c": hour_data["temp_c"],
"temp_f": hour_data["temp_f"],
"is_day": hour_data["is_day"],
"condition": hour_data["condition"]["text"],
"wind_mph": hour_data["wind_mph"],
"wind_kph": hour_data["wind_kph"],
"humidity": hour_data["humidity"],
"cloud": hour_data["cloud"],
"feelslike_c": hour_data["feelslike_c"],
"feelslike_f": hour_data["feelslike_f"],
"windchill_c": hour_data["windchill_c"],
"windchill_f": hour_data["windchill_f"],
"heatindex_c": hour_data["heatindex_c"],
"heatindex_f": hour_data["heatindex_f"],
"dewpoint_c": hour_data["dewpoint_c"],
"dewpoint_f": hour_data["dewpoint_f"],
"vis_km": hour_data["vis_km"],
"vis_miles": hour_data["vis_miles"],
"gust_mph": hour_data["gust_mph"],
"gust_kph": hour_data["gust_kph"],
"uv": hour_data["uv"]
}
# Convert extracted data into a DataFrame
df = pd.DataFrame([extracted_data])
print("dataframe", df)
# Extracting additional date/time features
df['time']=pd.to_datetime(df['time'])
df['datetime']=pd.to_datetime(df['time'])
df['day'] = df['datetime'].dt.day # Extracts day of the month
df['month'] = df['datetime'].dt.month # Extracts month
df['hour'] = df['datetime'].dt.hour
# Prepare features for prediction
dx=df[['temp_c', 'temp_f', 'is_day','wind_mph', 'wind_kph', 'humidity', 'cloud', 'feelslike_c','feelslike_f', 'windchill_c', 'windchill_f', 'heatindex_c','heatindex_f', 'dewpoint_c', 'dewpoint_f', 'vis_km', 'vis_miles','gust_mph', 'gust_kph', 'uv', 'day', 'month', 'hour']]
x = dx.drop(['wind_mph', 'wind_kph'], axis=1)
x_unk = np.array(x)
x_unk = x_unk / 110
predictions = model.predict(x_unk)
predicted_wind_speed = predictions[0][0]
print("predictions",predictions)
map_file = "static/multiple_wind_speed_map.html"
create_map(df, predicted_wind_speed, map_file)
return render_template('results.html',
actual=df['wind_kph'][0],
predicted=predicted_wind_speed,
map_file='multiple_wind_speed_map.html')
else:
return "Failed to retrieve weather data."
if __name__ == '__main__':
app.run(debug=True)
|