File size: 11,297 Bytes
1e216a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
from keras.models import model_from_json
import tensorflow as tf
import matplotlib.pyplot as plt
import joblib
import requests
import json
from datetime import datetime

def load_model(name):
    # Load JSON and create model
    json_file = open("%s.json" % name, "r")
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)

    # Check if the weights file exists before loading
    weights_file = f"{name}.weights.h5"
    if not Path(weights_file).is_file():
        raise FileNotFoundError(f"Weight file {weights_file} not found.")
    
    # Load weights into the new model
    loaded_model.load_weights(weights_file)
    print("Loaded model from disk")
    return loaded_model

model = load_model("3_day_forecast_AQI_v5")

####################################

# Load the scalers
scaler_X = joblib.load('scaler_X_AQI.pkl')
scaler_y = joblib.load('scaler_y_AQI.pkl')

import requests
import pandas as pd
import joblib
import os
from datetime import datetime
# delhi  28.639638713652012, 77.19002000205269
# bhopal 23.23731292701139, 77.44433463788636
# ahemdabad 23.0364012974141, 72.58238347964425
# ankleshwar 21.62880896774956, 73.0043990197163
# jamnagar 22.3033564155508, 70.8012921707898
# 21.22050672027795  72.83355967457062#  
# 21.236796371788703, 72.8665479925569

# Define API parameters
api_key = "26daca1b78f44099a755b921be4bfcf1"  # Your WeatherAPI key
latitude = 21.236796371788703  # Example latitude
longitude = 72.8665479925569  #  # Example longitude
base_url = f"https://api.weatherbit.io/v2.0/current/airquality?lat={latitude}&lon={longitude}&key={api_key}"

# Make the API request
response = requests.get(base_url)
if response.status_code == 200:
    data = response.json()

# Extract forecast data
dx = [data['data'][0]]
test = pd.DataFrame(dx)

# Add time-based features
now = datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
test = test[['pm25', 'pm10', 'no2', 'so2', 'co', 'aqi']]
test['Date'] = pd.to_datetime(current_time)
test['Day'] = test['Date'].dt.day
test['Month'] = test['Date'].dt.month
test['Hour'] = test['Date'].dt.hour
test = test[['pm25', 'pm10', 'no2', 'so2', 'co', 'aqi', 'Day', 'Month', 'Hour']]
test.columns = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'AQI', 'Day', 'Month', 'Hour']

# Load scalers
scaler_X = joblib.load('scaler_X_AQI.pkl')
scaler_y = joblib.load('scaler_y_AQI.pkl')

# Standardize data and make predictions
data_normalized = scaler_X.transform(test)
prediction_Test = model.predict(data_normalized)
predictions_actual = scaler_y.inverse_transform(prediction_Test)
test['lat']= latitude
test['lon']= longitude
# Create a DataFrame for predictions
pred = pd.DataFrame(predictions_actual, columns=['AQI_step_1', 'AQI_step_2', 'AQI_step_3'])
df = pd.concat([test, pred], axis=1)

# Define the CSV file path
csv_file_path = "aqi_data.csv"

# Create the CSV file with headers if it doesn't exist
if not os.path.exists(csv_file_path):
    columns = ['PM2.5', 'PM10', 'NO2', 'SO2', 'CO', 'AQI', 'Day', 'Month', 'Hour', 'lat', 'lon', 'AQI_step_1', 'AQI_step_2', 'AQI_step_3']
    df_empty = pd.DataFrame(columns=columns)
    df_empty.to_csv(csv_file_path, index=False)

# Append new data to the existing CSV
df.to_csv(csv_file_path, mode='a', index=False, header=False)

print(f"Data appended to {csv_file_path}")


####################################


import requests
import json
from datetime import datetime

# Define API parameters
api_key = "26daca1b78f44099a755b921be4bfcf1"  # Your WeatherAPI key
# 21.195069775800516,72.79324648126439
# 21.22050672027795, 72.83355967457062
# 28.639638713652012,77.19002000205269
# 23.23731292701139,77.44433463788636,
# 23.0364012974141,72.58238347964425,
# 21.62880896774956,73.0043990197163,
# jamnagar 22.3033564155508, 70.8012921707898
# new delhi 28.619913380208967, 77.20633325621425

latitude = 21.236796371788703  # Example latitude
longitude = 72.8665479925569  #  # Example longitude

base_url = f"https://api.weatherbit.io/v2.0/forecast/airquality?lat={latitude}&lon={longitude}&key={api_key}"

# Make the API request
response = requests.get(base_url)

if response.status_code == 200:
    # Parse the returned JSON data
    data = response.json()
    
data

data=data['data']

from collections import defaultdict

# Group AQI values by date (ignoring the hour)
grouped_aqi = defaultdict(list)

for entry in data:
    # Extract date part only from the datetime (before the colon)
    date = entry['datetime'].split(':')[0]
    aqi = entry['aqi']
    grouped_aqi[date].append(aqi)

# Convert defaultdict to a regular dictionary
grouped_aqi = dict(grouped_aqi)

# Display the result
print(grouped_aqi)
index=11
key= grouped_aqi.keys()
samp={}
samp.clear()
for i in key:
    print(i)
    ls=grouped_aqi[i]
    if index<len(ls):
        print(ls[11])
        samp[i]=ls[11]
    else:
        print(ls[-1])
        samp[i]=ls[-1]
print(samp)
df = pd.DataFrame([samp])
df.columns=['AQI_currrent','AQI_step_1', 'AQI_step_2', 'AQI_step_3']
print(df)
# Define the CSV file path
csv_file_path = "aqi_data_actual_api.csv"

# Create the CSV file with headers if it doesn't exist
if not os.path.exists(csv_file_path):
    columns = ['AQI_currrent_API','AQI_step_1_API', 'AQI_step_2_API', 'AQI_step_3_API']
    df_empty = pd.DataFrame(columns=columns)
    df_empty.to_csv(csv_file_path, index=False)
    
# Append new data to the existing CSV
df.to_csv(csv_file_path, mode='a', index=False, header=False)


##########################################################


import folium
import matplotlib.pyplot as plt
from io import BytesIO
import base64
import pandas as pd


df1= pd.read_csv('aqi_data.csv')
df2= pd.read_csv('aqi_data_actual_api.csv')
data = pd.concat([df1,df2],axis=1)
data = data.head(3)
# Create the Folium map
map_center = [data['lat'].mean(), data['lon'].mean()]
m = folium.Map(location=map_center, zoom_start=10)

# AQI Color Legend
legend_html = """

<div style="

    position: fixed; 

    bottom: 20px; left: 20px; width: 350px; height: 225px; 

    background-color: white; 

    z-index:9999; font-size:14px; border:2px solid grey; 

    padding: 10px; overflow-y: auto;">

    <b>AQI Color Legend</b>

    <table style="width: 100%; border-collapse: collapse; text-align: left;">

        <thead>

            <tr style="border-bottom: 2px solid grey;">

                <th style="padding: 5px;">Color</th>

                <th style="padding: 5px;">Remark</th>

                <th style="padding: 5px;">Range</th>

            </tr>

        </thead>

        <tbody>

            <tr>

                <td><i style="background:green; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Good</td>

                <td>0-50</td>

            </tr>

            <tr>

                <td><i style="background:yellow; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Moderate</td>

                <td>51-100</td>

            </tr>

            <tr>

                <td><i style="background:orange; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Unhealthy for Sensitive Groups</td>

                <td>101-150</td>

            </tr>

            <tr>

                <td><i style="background:red; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Unhealthy</td>

                <td>151-200</td>

            </tr>

            <tr>

                <td><i style="background:purple; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Very Unhealthy</td>

                <td>201-300</td>

            </tr>

            <tr>

                <td><i style="background:maroon; width:15px; height:15px; display:inline-block; border:1px solid black;"></i></td>

                <td>Hazardous</td>

                <td>301+</td>

            </tr>

        </tbody>

    </table>

</div>

"""
# Add the legend to the map
legend = folium.Element(legend_html)
m.get_root().html.add_child(legend)

# Function to generate a horizontal bar plot
def create_aqi_comparison_plot(data):
    fig, ax = plt.subplots(figsize=(5, 2))
    categories = ['DAY 1', 'DAY 2', 'DAY 3']
    actual_values = [data['AQI_step_1'], data['AQI_step_2'], data['AQI_step_3']]
    api_values = [data['AQI_step_1_API'], data['AQI_step_2_API'], data['AQI_step_3_API']]

    bar_width = 0.35
    index = range(len(categories))

    # Plot horizontal bars
    bars_actual = ax.barh(index, actual_values, bar_width, label="Model AQI", color='blue')
    bars_api = ax.barh([i + bar_width for i in index], api_values, bar_width, label="API AQI", color='green')

    # Add values to each bar
    max_value = 0  # Track the maximum value for axis limit adjustment
    for bar in bars_actual:
        value = bar.get_width()
        ax.text(value + 2, bar.get_y() + bar.get_height() / 2, 
                f'{value:.1f}', va='center', fontsize=10)
        max_value = max(max_value, value)
    for bar in bars_api:
        value = bar.get_width()
        ax.text(value + 2, bar.get_y() + bar.get_height() / 2, 
                f'{value:.1f}', va='center', fontsize=10)
        max_value = max(max_value, value)

    # Adjust x-axis limits to accommodate annotations
    ax.set_xlim(0, max_value * 1.2)

    # Customize y-ticks and labels
    ax.set_yticks([i + bar_width / 2 for i in index])
    ax.set_yticklabels(categories)
    ax.set_xlabel('AQI')
    ax.set_title('AQI Comparison')

    # Place legend outside the plot area
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)

    plt.tight_layout()

    # Save the plot to a PNG image in memory
    buffer = BytesIO()
    plt.savefig(buffer, format="png", bbox_inches='tight')
    plt.close(fig)
    buffer.seek(0)

    # Encode the image to base64 to embed it in the HTML
    image_base64 = base64.b64encode(buffer.read()).decode()
    return f'<img src="data:image/png;base64,{image_base64}">'

# Function to determine AQI marker color
def get_color_for_aqi(aqi_value):
    if aqi_value <= 50:
        return 'green'
    elif aqi_value <= 100:
        return 'yellow'
    elif aqi_value <= 150:
        return 'orange'
    elif aqi_value <= 200:
        return 'red'
    elif aqi_value <= 300:
        return 'purple'
    else:
        return 'maroon'

# Add markers with AQI comparison plot
for _, row in data.iterrows():
    color = get_color_for_aqi(row['AQI_step_1'])
    popup_html = create_aqi_comparison_plot(row)
    folium.Marker(
        location=[row["lat"], row["lon"]],
        popup=folium.Popup(html=popup_html, max_width=500),
        #tooltip=row["name"],
        icon=folium.Icon(color=color)
    ).add_to(m)

# Save the map
m.save("aqi_forecast_with_legend.html")
m