mesutdmn commited on
Commit
110d80a
·
1 Parent(s): e01fe19

Streamlit App

Browse files
Files changed (9) hide show
  1. .gitattributes +1 -0
  2. app.py +99 -0
  3. media/3bears.ico +0 -0
  4. media/background.jpg +3 -0
  5. model.pth +3 -0
  6. model.py +146 -0
  7. requirements.txt +3 -0
  8. style/style.css +26 -0
  9. tokenizer.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ media/background.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tokenizers import Tokenizer
3
+ from torch.utils.data import DataLoader
4
+
5
+ import streamlit as st
6
+ import base64
7
+ from model import CustomDataset, TransformerEncoder
8
+
9
+ st.set_page_config(layout="wide",page_title="TeknoFest We Bears NLP Competition", page_icon="./media/3bears.ico")
10
+
11
+ tag2id = {"O": 0, "olumsuz": 1, "nötr": 2, "olumlu": 3, "org": 4}
12
+ id2tag = {value: key for key, value in tag2id.items()}
13
+ device = torch.device('cpu')
14
+
15
+ @st.cache_resource
16
+ def load_model_to_cpu(_model, path="model.pth"):
17
+ checkpoint = torch.load(path, map_location=torch.device('cpu'))
18
+ _model.load_state_dict(checkpoint)
19
+ return _model
20
+
21
+ def get_base64(bin_file):
22
+ with open(bin_file, 'rb') as f:
23
+ data = f.read()
24
+ return base64.b64encode(data).decode()
25
+
26
+ def predict_fonk(model, device, example, tokenizer):
27
+ model.to(device)
28
+ model.eval()
29
+ predictions = []
30
+
31
+ encodings_prdict = tokenizer.encode(example)
32
+
33
+ predict_texts = [encodings_prdict.tokens]
34
+ predict_input_ids = [encodings_prdict.ids]
35
+ predict_attention_masks = [encodings_prdict.attention_mask]
36
+ predict_token_type_ids = [encodings_prdict.type_ids]
37
+ prediction_labels = [encodings_prdict.type_ids]
38
+
39
+ predict_data = CustomDataset(predict_texts, predict_input_ids, predict_attention_masks, predict_token_type_ids,
40
+ prediction_labels)
41
+
42
+ predict_loader = DataLoader(predict_data, batch_size=1, shuffle=False)
43
+
44
+ with torch.no_grad():
45
+ for dataset in predict_loader:
46
+ batch_input_ids = dataset['input_ids'].to(device)
47
+ batch_att_mask = dataset['attention_mask'].to(device)
48
+
49
+
50
+
51
+ outputs = model(batch_input_ids, batch_att_mask)
52
+ logits = outputs.view(-1, outputs.size(-1)) # Flatten the outputs
53
+ _, predicted = torch.max(logits, 1)
54
+
55
+ # Ignore padding tokens for predictions
56
+ predictions.append(predicted)
57
+
58
+ results_list = []
59
+ entity_list = []
60
+ results_dict = {}
61
+ trio = zip(predict_loader.dataset[0]["text"], predictions[0].tolist(), predict_attention_masks[0])
62
+
63
+ for i, (token, label, attention) in enumerate(trio):
64
+ if attention != 0 and label != 0 and label !=4:
65
+ for next_ones in predictions[0].tolist()[i+1:]:
66
+ i+=1
67
+ if next_ones == 4:
68
+ token = token +" "+ predict_loader.dataset[0]["text"][i]
69
+ else:break
70
+ if token not in entity_list:
71
+ entity_list.append(token)
72
+ results_list.append({"entity":token,"sentiment":id2tag.get(label)})
73
+
74
+
75
+ results_dict["entity_list"] = entity_list
76
+ results_dict["results"] = results_list
77
+
78
+
79
+ return results_dict
80
+
81
+ model = TransformerEncoder()
82
+ model = load_model_to_cpu(model, "model.pth")
83
+ tokenizer = Tokenizer.from_file("tokenizer.json")
84
+
85
+ background = get_base64("./media/background.jpg")
86
+
87
+ with open("./style/style.css", "r") as style:
88
+ css=f"""<style>{style.read().format(background=background)}</style>"""
89
+ st.markdown(css, unsafe_allow_html=True)
90
+
91
+ left, middle, right = st.columns([1,1.5,1])
92
+ main, comps , result = middle.tabs([" ", " ", " "])
93
+ with main:
94
+ example = st.text_area(label='Metin Kutusu: ', placeholder="Lütfen Şikayet veya Yorum Metnini Buraya Yazın, daha sonra Predicte tıklayın")
95
+
96
+ if st.button("Predict"):
97
+ predict_list = predict_fonk(model=model, device=device, example=example, tokenizer=tokenizer)
98
+
99
+ st.write(predict_list)
media/3bears.ico ADDED
media/background.jpg ADDED

Git LFS Details

  • SHA256: 4bf428ef9b1d08f0f8bba84a6fc571d3b45cb4f081b79e04f1e178eddba25f58
  • Pointer size: 132 Bytes
  • Size of remote file: 3.27 MB
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:320bc3db757e8b07b86ae43a0a3ff8adca691db7e25359b1e31d999ef4906d65
3
+ size 280754978
model.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.utils.data import Dataset
5
+ import math
6
+
7
+ class CustomDataset(Dataset):
8
+ def __init__(self, texts, input_ids, attention_masks, token_type_ids, labels):
9
+ self.texts = texts
10
+ self.input_ids = input_ids
11
+ self.token_type_ids = token_type_ids
12
+ self.attention_masks = attention_masks
13
+ self.labels = labels
14
+
15
+
16
+ def __len__(self):
17
+ return len(self.texts)
18
+
19
+ def __getitem__(self, item ):
20
+ text = self.texts[item]
21
+ input_id = torch.LongTensor(self.input_ids[item])
22
+ token_type_id = torch.LongTensor(self.token_type_ids[item])
23
+ attention_mask = torch.LongTensor(self.attention_masks[item])
24
+ label = torch.LongTensor(self.labels[item])
25
+
26
+
27
+ return {
28
+ 'text': text,
29
+ 'input_ids': input_id,
30
+ 'token_type_ids': token_type_id,
31
+ 'attention_mask': attention_mask,
32
+ 'labels': label,
33
+ }
34
+ class FeedForwardSubLayer(nn.Module):
35
+ # Specify the two linear layers' input and output sizes
36
+ def __init__(self, d_model, d_ff):
37
+ super(FeedForwardSubLayer, self).__init__()
38
+ self.fc1 = nn.Linear(d_model, d_ff)
39
+ self.fc2 = nn.Linear(d_ff, d_model)
40
+ self.relu = nn.ReLU()
41
+
42
+ # Apply a forward pass
43
+ def forward(self, x):
44
+ return self.fc2(self.relu(self.fc1(x)))
45
+
46
+ # Complete the initialization of elements in the encoder layer
47
+ class EncoderLayer(nn.Module):
48
+ def __init__(self, d_model, num_heads, d_ff, dropout):
49
+ super(EncoderLayer, self).__init__()
50
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
51
+ self.feed_forward = FeedForwardSubLayer(d_model, d_ff)
52
+ self.norm1 = nn.LayerNorm(d_model)
53
+ self.norm2 = nn.LayerNorm(d_model)
54
+ self.dropout = nn.Dropout(dropout)
55
+
56
+ def forward(self, x, mask):
57
+ attn_output = self.self_attn(x, x, x, mask)
58
+ x = self.norm1(x + self.dropout(attn_output))
59
+ ff_output = self.feed_forward(x)
60
+ return self.norm2(x + self.dropout(ff_output))
61
+
62
+ class MultiHeadAttention(nn.Module):
63
+ def __init__(self, d_model, num_heads):
64
+ super(MultiHeadAttention, self).__init__()
65
+ # Set the number of attention heads
66
+ self.num_heads = num_heads
67
+ self.d_model = d_model
68
+ assert d_model % num_heads == 0 #dimension, headlere tam bölünüyormu kontrol et.
69
+ self.head_dim = d_model // num_heads
70
+ # Set up the linear transformations
71
+ self.query_linear = nn.Linear(d_model, d_model)
72
+ self.key_linear = nn.Linear(d_model, d_model)
73
+ self.value_linear = nn.Linear(d_model, d_model)
74
+ self.output_linear = nn.Linear(d_model, d_model)
75
+
76
+ def split_heads(self, x, batch_size):
77
+ # Split the sequence embeddings in x across the attention heads
78
+ x = x.view(batch_size, -1, self.num_heads, self.head_dim)
79
+ return x.permute(0, 2, 1, 3) #.contiguous().view(batch_size * self.num_heads, -1, self.head_dim)
80
+
81
+ def compute_attention(self, query, key, mask=None):
82
+ # Compute dot-product attention scores
83
+ scores = torch.matmul(query, key.permute(0,1,3,2))
84
+ mask = mask.unsqueeze(1).unsqueeze(1)
85
+
86
+
87
+ if mask is not None:
88
+ scores = scores.masked_fill(mask == 0, float("-1e20"))
89
+ # Normalize attention scores into attention weights
90
+ attention_weights = F.softmax(scores, dim=-1)
91
+ return attention_weights
92
+
93
+ def forward(self, query, key, value, mask=None):
94
+ batch_size = query.size(0)
95
+
96
+ query = self.split_heads(self.query_linear(query), batch_size)
97
+ key = self.split_heads(self.key_linear(key), batch_size)
98
+ value = self.split_heads(self.value_linear(value), batch_size)
99
+
100
+ attention_weights = self.compute_attention(query, key, mask)
101
+
102
+ # Multiply attention weights by values, concatenate and linearly project outputs
103
+ output = torch.matmul(attention_weights, value)
104
+ output = output.view(batch_size, self.num_heads, -1, self.head_dim).permute(0, 2, 1, 3).contiguous().view(
105
+ batch_size, -1, self.d_model)
106
+ return self.output_linear(output)
107
+
108
+ class PositionalEncoder(nn.Module):
109
+ def __init__(self, d_model, max_length):
110
+ super(PositionalEncoder, self).__init__()
111
+ self.d_model = d_model
112
+ self.max_length = max_length
113
+
114
+ # Initialize the positional encoding matrix
115
+ pe = torch.zeros(max_length, d_model)
116
+ position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)
117
+ div_term = torch.exp(torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model))
118
+
119
+ # Calculate and assign position encodings to the matrix
120
+ pe[:, 0::2] = torch.sin(position * div_term)
121
+ pe[:, 1::2] = torch.cos(position * div_term)
122
+ pe = pe.unsqueeze(0)
123
+ self.register_buffer('pe', pe)
124
+
125
+ # Update the embeddings tensor adding the positional encodings
126
+ def forward(self, x):
127
+ x = x + self.pe[:, :x.size(1)]
128
+ return x
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(self):
132
+ super(TransformerEncoder, self).__init__()
133
+ self.embedding = nn.Embedding(100000, 512)
134
+ self.positional_encoding = PositionalEncoder(512, 128)
135
+ # Define a stack of multiple encoder layers
136
+ self.layers = nn.ModuleList([EncoderLayer(512, 8, 2048, 0.1) for _ in range(6)])
137
+
138
+ # Complete the forward pass method
139
+ def forward(self, x, mask):
140
+ x = self.embedding(x)
141
+ x = self.positional_encoding(x)
142
+ for layer in self.layers:
143
+ x = layer(x, mask)
144
+ return x
145
+
146
+
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.3.0
2
+ tokenizers==0.13.3
3
+ streamlit
style/style.css ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ body {{
2
+ background-image: url("data:image/png;base64,{background}");
3
+ background-size: cover;
4
+ background-repeat: no-repeat;
5
+ background-attachment: fixed;
6
+ background-position: center;
7
+ margin: 0;
8
+ padding: 0;
9
+ height: 100vh;
10
+ }}
11
+
12
+ p {{
13
+ color: black;
14
+ font-family: "Google Sans",Roboto,Arial,sans-serif;
15
+ font-size: 20px;
16
+
17
+ }}
18
+
19
+ header[data-testid = "stHeader"]{{background: rgba(255,255,255,0);}}
20
+ button[data-testid = "baseButton-secondary"]{{width: 100%;}}
21
+ div[data-testid = "stButton"] > button > div > p {{color: white; font-size: 15px;}}
22
+ div[data-testid = "stApp"]{{background: None; color: black;}}
23
+ div[id^=tabs-bui][id$=-tabpanel-0]{{padding: 20px; border-radius: 2rem; background: rgba(255,255,255,0.7);}}
24
+ div[class = "react-json-view"]{{padding: 20px; border-radius: 2rem; background: rgba(255,255,255,0.7);}}
25
+ div[data-testid = "stMarkdownContainer"] > p {{color: black; font-size: 15px; font-weight: bold;}}
26
+
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff