Spaces:
Runtime error
Runtime error
File size: 8,954 Bytes
9d58c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st
from models.deep_colorization.colorizers import *
import cv2
from PIL import Image
import pathlib
import tempfile
import moviepy.editor as mp
import time
from tqdm import tqdm
def format_time(seconds: float) -> str:
"""Formats time in seconds to a human readable format"""
if seconds < 60:
return f"{int(seconds)} seconds"
elif seconds < 3600:
minutes = seconds // 60
seconds %= 60
return f"{minutes} minutes and {int(seconds)} seconds"
elif seconds < 86400:
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds %= 60
return f"{hours} hours, {minutes} minutes, and {int(seconds)} seconds"
else:
days = seconds // 86400
hours = (seconds % 86400) // 3600
minutes = (seconds % 3600) // 60
seconds %= 60
return f"{days} days, {hours} hours, {minutes} minutes, and {int(seconds)} seconds"
# Function to colorize video frames
def colorize_frame(frame, colorizer) -> np.ndarray:
tens_l_orig, tens_l_rs = preprocess_img(frame, HW=(256, 256))
return postprocess_tens(tens_l_orig, colorizer(tens_l_rs).cpu())
image = Image.open(r'img/streamlit.png') # Brand logo image (optional)
APP_DIR = pathlib.Path(__file__).parent.absolute()
LOCAL_DIR = APP_DIR / "local_video"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)
print(APP_DIR)
print(LOCAL_DIR)
print(save_dir)
# Create two columns with different width
col1, col2 = st.columns([0.8, 0.2])
with col1: # To display the header text using css style
st.markdown(""" <style> .font {
font-size:35px ; font-family: 'Cooper Black'; color: #FF4B4B;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Upload your photo or video here...</p>', unsafe_allow_html=True)
with col2: # To display brand logo
st.image(image, width=100)
# Add a header and expander in side bar
st.sidebar.markdown('<p class="font">Color Revive App</p>', unsafe_allow_html=True)
with st.sidebar.expander("About the App"):
st.write("""
Use this simple app to colorize your black and white images and videos with state of the art models.
""")
# Add file uploader to allow users to upload photos
uploaded_file = st.file_uploader("", type=['jpg', 'png', 'jpeg', 'mp4'])
# Add 'before' and 'after' columns
if uploaded_file is not None:
file_extension = uploaded_file.name.split('.')[1].lower()
if file_extension in ['jpg', 'png', 'jpeg']:
image = Image.open(uploaded_file)
col1, col2 = st.columns([0.5, 0.5])
with col1:
st.markdown('<p style="text-align: center;">Before</p>', unsafe_allow_html=True)
st.image(image, width=300)
# Add conditional statements to take the user input values
with col2:
st.markdown('<p style="text-align: center;">After</p>', unsafe_allow_html=True)
filter = st.sidebar.radio('Colorize your image with:',
['Original', 'ECCV 16', 'SIGGRAPH 17'])
if filter == 'ECCV 16':
colorizer_eccv16 = eccv16(pretrained=True).eval()
img = load_img(uploaded_file)
(tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256, 256))
out_img_eccv16 = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())
st.image(out_img_eccv16, width=300)
elif filter == 'SIGGRAPH 17':
colorizer_siggraph17 = siggraph17(pretrained=True).eval()
img = load_img(uploaded_file)
(tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256, 256))
out_img_siggraph17 = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())
st.image(out_img_siggraph17, width=300)
else:
st.image(image, width=300)
elif file_extension == 'mp4': # If uploaded file is a video
# Save the video file to a temporary location
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(uploaded_file.read())
# Open the video using cv2.VideoCapture
video = cv2.VideoCapture(temp_file.name)
# Get video information
fps = video.get(cv2.CAP_PROP_FPS)
# Create two columns for video display
col1, col2 = st.columns([0.5, 0.5])
with col1:
st.markdown('<p style="text-align: center;">Before</p>', unsafe_allow_html=True)
st.video(temp_file.name)
with col2:
st.markdown('<p style="text-align: center;">After</p>', unsafe_allow_html=True)
filter = st.sidebar.radio('Colorize your video with:',
['Original', 'ECCV 16', 'SIGGRAPH 17'])
if filter == 'ECCV 16':
colorizer = eccv16(pretrained=True).eval()
elif filter == 'SIGGRAPH 17':
colorizer = siggraph17(pretrained=True).eval()
if filter != 'Original':
with st.spinner("Colorizing frames..."):
# Colorize video frames and store in a list
output_frames = []
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
progress_bar = st.empty()
start_time = time.time()
for i in tqdm(range(total_frames), unit='frame', desc="Progress"):
ret, frame = video.read()
if not ret:
break
colorized_frame = colorize_frame(frame, colorizer)
output_frames.append((colorized_frame * 255).astype(np.uint8))
elapsed_time = time.time() - start_time
frames_completed = len(output_frames)
frames_remaining = total_frames - frames_completed
time_remaining = (frames_remaining / frames_completed) * elapsed_time
progress_bar.progress(frames_completed / total_frames)
if frames_completed < total_frames:
progress_bar.text(f"Time Remaining: {format_time(time_remaining)}")
else:
progress_bar.empty()
with st.spinner("Merging frames to video..."):
print("finished")
frame_size = output_frames[0].shape[:2]
print(frame_size)
output_filename = "output.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for MP4 video
print(fps)
out = cv2.VideoWriter(output_filename, fourcc, fps, (3840, 2160))
# Display the colorized video using st.video
for frame in output_frames:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
# Convert the output video to a format compatible with Streamlit
converted_filename = "converted_output.mp4"
clip = mp.VideoFileClip(output_filename)
clip.write_videofile(converted_filename, codec="libx264")
# Display the converted video using st.video()
st.video(converted_filename)
# Add a download button for the colorized video
st.download_button(
label="Download Colorized Video",
data=open(converted_filename, "rb").read(),
file_name="colorized_video.mp4"
)
# Close and delete the temporary file after processing
video.release()
temp_file.close()
# Add a feedback section in the sidebar
st.sidebar.title(' ') # Used to create some space between the filter widget and the comments section
st.sidebar.markdown(' ') # Used to create some space between the filter widget and the comments section
st.sidebar.subheader('Please help us improve!')
with st.sidebar.form(key='columns_in_form',
clear_on_submit=True): # set clear_on_submit=True so that the form will be reset/cleared once
# it's submitted
rating = st.slider("Please rate the app", min_value=1, max_value=5, value=3,
help='Drag the slider to rate the app. This is a 1-5 rating scale where 5 is the highest rating')
text = st.text_input(label='Please leave your feedback here')
submitted = st.form_submit_button('Submit')
if submitted:
st.write('Thanks for your feedback!')
st.markdown('Your Rating:')
st.markdown(rating)
st.markdown('Your Feedback:')
st.markdown(text)
|