File size: 6,090 Bytes
8ccf632
 
 
 
 
81b26b5
06f0278
2927cdb
06f0278
8ccf632
4ea3b6f
8ccf632
2927cdb
8ccf632
06f0278
8ccf632
3f9a584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927cdb
8ccf632
2927cdb
 
3f9a584
2927cdb
 
 
 
 
 
 
54192f0
 
3f9a584
 
 
8ccf632
 
3f9a584
2927cdb
 
 
 
3f9a584
 
2927cdb
8ccf632
2927cdb
 
8ccf632
3f9a584
 
 
8ccf632
 
2927cdb
 
 
 
3f9a584
2927cdb
3f9a584
2927cdb
8ccf632
 
2927cdb
 
 
3f9a584
2927cdb
 
 
8ccf632
 
2927cdb
8ccf632
 
2927cdb
 
 
 
 
 
 
 
 
 
3f9a584
8ccf632
2927cdb
3f9a584
2927cdb
3f9a584
 
 
 
 
 
8ccf632
3f9a584
 
 
2927cdb
 
8ccf632
2927cdb
 
8ccf632
 
 
 
 
 
 
3f9a584
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927cdb
3f9a584
2927cdb
 
 
 
 
 
3f9a584
8ccf632
2927cdb
3f9a584
2927cdb
 
 
8ccf632
 
2927cdb
8ccf632
2b62414
2927cdb
3f9a584
 
8ccf632
 
2927cdb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

# Load the model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Style list for prompt customization
style_list = [
    {"name": "D&D Art", "prompt": "dungeons & dragons style artwork {prompt}. d&d style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast"},
    {"name": "Dark Fantasy", "prompt": "dark and moody dungeons & dragons artwork of {prompt}. gothic ruins, shadowy figures, haunting atmospheres, grim villains, muted colors, intricate textures, sinister undertones", "negative_prompt": "bright, cheerful, cartoonish, lighthearted, futuristic, deformed"},
    {"name": "Epic Battle", "prompt": "dynamic dungeons & dragons artwork of {prompt}. epic battle scene, legendary heroes, fierce monsters, intense action, dramatic lighting, high-detail environment, magical effects, vibrant colors", "negative_prompt": "peaceful, mundane, low energy, modern, sci-fi, simplistic, cartoonish, low contrast"},
    # Add additional styles as needed
    {"name": "(No style)", "prompt": "{prompt}", "negative_prompt": ""},
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "D&D Art"

# Function to apply selected style
def apply_style(style_name: str, positive: str, negative: str = ""):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + (negative or "")

# Inference function
@spaces.GPU()
def infer(
    prompt,
    style,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    num_inference_steps=4,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Apply style to prompt
    styled_prompt, negative_prompt = apply_style(style, prompt)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=styled_prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0,
        negative_prompt=negative_prompt,
    ).images[0]
    return image, seed

# Example prompts
examples = [
    ["A heroic adventurer wielding a flaming sword standing on a cliff", "D&D Art"],
    ["A mystical library with ancient scrolls and glowing runes", "Dark Fantasy"],
    ["A ferocious dragon breathing fire in a dark cavern", "Epic Battle"],
]

# Custom CSS for a Dungeons & Dragons theme
css = """
body {
    background-color: #1b1b1b;
    font-family: 'Cinzel', serif;
    color: #f5f5f5;
    background-image: url('https://www.transparenttextures.com/patterns/dark-matter.png');
}
#col-container {
    margin: 0 auto;
    max-width: 550px;
    padding: 15px;
    border: 4px solid #8b4513;
    background: linear-gradient(145deg, #2e2b2a, #3a3433);
    border-radius: 15px;
    box-shadow: 0 0 20px rgba(0, 0, 0, 0.8);
}
"""

# Interface
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        # Title and Description
        gr.Markdown(
            """
            # 🛡️ ChatDnD.net Dungeons & Dragons Image Generator ⚔️
            **Unleash Your Imagination!** Create heroes, maps, quests, and epic scenes to bring your campaigns to life. 
            Tailored for adventurers seeking inspiration or Dungeon Masters constructing their next grand story. <br>
            [Visit Our Website](https://chatdnd.net) | [Support Us](https://buymeacoffee.com/watchoutformike)
            """
        )

        # Prompt input and style selector
        with gr.Row():
            prompt = gr.Textbox(
                label="🎲 Describe Your Vision:",
                lines=3,
                placeholder="Describe your hero, monster, or legendary landscape..."
            )
            style = gr.Dropdown(
                label="🎨 Select a Style",
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
            )
        
        # Run button and result display
        with gr.Row():
            run_button = gr.Button("Generate Image")
        result = gr.Image(label="🖼️ Your Legendary Vision")
        
        # Advanced settings
        with gr.Accordion("⚙️ Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            num_inference_steps = gr.Slider(
                label="Inference Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=4,
            )

        # Examples with styles
        gr.Examples(
            examples=examples,
            inputs=[prompt, style],
            outputs=[result],
            fn=infer,
            cache_examples="lazy",
        )

    # Interactivity
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, style, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed],
    )

# Launch the demo
demo.launch()