Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,32 +3,12 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
-
device = "cuda"
|
| 11 |
-
|
| 12 |
-
bfl_repo = "black-forest-labs/FLUX.1-schnell"
|
| 13 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision="refs/pr/1")
|
| 14 |
-
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 15 |
-
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 16 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="refs/pr/1")
|
| 17 |
-
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="refs/pr/1")
|
| 18 |
-
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="refs/pr/1")
|
| 19 |
-
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision="refs/pr/1")
|
| 20 |
-
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
-
pipe =
|
| 24 |
-
scheduler=scheduler,
|
| 25 |
-
text_encoder=text_encoder,
|
| 26 |
-
tokenizer=tokenizer,
|
| 27 |
-
text_encoder_2=text_encoder_2,
|
| 28 |
-
tokenizer_2=tokenizer_2,
|
| 29 |
-
vae=vae,
|
| 30 |
-
transformer=transformer,
|
| 31 |
-
).to("cuda")
|
| 32 |
|
| 33 |
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
MAX_IMAGE_SIZE = 2048
|
|
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import DiffusionPipeline
|
|
|
|
| 7 |
|
| 8 |
dtype = torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|