File size: 25,272 Bytes
e336179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25fd90
 
 
 
 
 
9ca0e14
c25fd90
 
e336179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7117754
 
 
b08c1da
7117754
71710ce
 
a9a09a3
326c3fe
4ff7727
326c3fe
 
 
6efd4b6
326c3fe
 
4ff7727
a9a09a3
 
326c3fe
a9a09a3
 
 
7117754
4ff7727
 
6efd4b6
4ff7727
 
 
 
6efd4b6
 
 
 
 
 
 
 
 
326c3fe
6efd4b6
326c3fe
 
 
 
 
9ca0e14
e336179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d7ae3
e336179
 
f3d7ae3
 
 
e336179
 
 
 
f3d7ae3
 
e336179
 
5059d6c
e336179
448a882
 
9ca0e14
448a882
9ca0e14
448a882
 
 
 
 
 
 
 
e336179
 
 
f3d7ae3
9ca0e14
f3d7ae3
9ca0e14
f3d7ae3
e336179
9ca0e14
e336179
 
 
 
 
9ca0e14
e336179
 
 
 
 
 
f3d7ae3
9ca0e14
f3d7ae3
 
 
9ca0e14
f3d7ae3
 
e336179
f3d7ae3
e336179
f3d7ae3
9ca0e14
e336179
 
f3d7ae3
e336179
f3d7ae3
 
 
 
 
 
e336179
 
f3d7ae3
 
 
 
 
 
 
 
e336179
 
f3d7ae3
 
 
 
 
 
 
 
e336179
 
f3d7ae3
 
 
 
 
 
 
 
 
 
e336179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ca0e14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union

import torch
from PIL import Image
import gradio as gr


from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    AutoencoderKL,
    AutoPipelineForImage2Image,
    FluxPipeline,
    FlowMatchEulerDiscreteScheduler)

from huggingface_hub import (
    hf_hub_download,
    HfFileSystem,
    ModelCard,
    snapshot_download)

from diffusers.utils import load_image

import spaces

#---if workspace = local or colab---

# Authenticate with Hugging Face
# from huggingface_hub import login

# Log in to Hugging Face using the provided token
# hf_token = 'hf-token-authentication'  # Replace with your actual token
# login(hf_token)

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# FLUX pipeline
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()
        
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

#------------------------------------------------------------------------------------------------------------------------------------------------------------#
loras = [
    #D&D Style
    {
        "image": "https://huggingface.co/SouthbayJay/dnd-style-flux/resolve/main/27073771.jpeg",
        "title": "DnD Style",
        "repo": "SouthbayJay/dnd-style-flux",
        "weights": "dnd_style_flux.safetensors",
        "trigger_word": "dndstyle"            
    },
    #DND Weasley
    {
        "image": "https://cdn-uploads.huggingface.co/production/uploads/noauth/T9jOsT74oPDh7EwRizkjH.webp",
        "title": "DnD Weasley",
        "repo": "weasley24/dnd-Flux-LoRA",
        "weights": "lora.safetensors",
        "trigger_word": "TOK"            
    },     
    #DND_PARTY
    {
        "image": "https://cdn-uploads.huggingface.co/production/uploads/noauth/hTDygXMBQ_fbut2mTnqwM.webp",
        "title": "DnD Weasley 2",
        "repo": "weasley24/dnd-party-Flux-LoRA",
        "weights": "lora.safetensors",
        "trigger_word": "DND_PARTY"            
    },
    #DND Sketch Art
    {
        "image": "https://cdn-uploads.huggingface.co/production/uploads/noauth/hUedjn4EDxVro01OkIe55.webp",
        "title": "DnD Sketch Art",
        "repo": "minaj546/dndsketchart",
        "weights": "lora.safetensors",
        "trigger_word": "DnD"            
    },
    #DNDDN
    {
        "image": "https://huggingface.co/mrTvister/Dnddn/resolve/main/images/photo_6_2025-01-09_21-51-14.jpg",
        "title": "DnD Portait",
        "repo": "mrTvister/Dnddn",
        "weights": "Dandadan.safetensors",
        "trigger_word": "Anime-style close-up, solid background"            
    },
    #99
    {
        "image": "https://huggingface.co/wavymulder/OverlordStyleFLUX/resolve/main/imgs/ComfyUI_00668_.png",
        "title": "DnD Overlord",
        "repo": "wavymulder/OverlordStyleFLUX",
        "weights": "ovld_style_overlord_wavymulder.safetensors",
        "trigger_word": "ovld style anime"          
    },       
    #add new
]

#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=100)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
        output_type="pil",
    ).images[0]
    return final_image 

@spaces.GPU(duration=100)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()
        
    #LoRA weights flow
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        pipe_to_use = pipe_i2i if image_input is not None else pipe
        weight_name = selected_lora.get("weights", None)
        
        pipe_to_use.load_lora_weights(
            lora_path, 
            weight_name=weight_name, 
            low_cpu_mem_usage=True
        )
            
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
    if(image_input is not None):
        
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
    
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter+=1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
            
        yield final_image, seed, gr.update(value=progress_bar, visible=False)
        
def get_huggingface_safetensors(link):
  split_link = link.split("/")
  if(len(split_link) == 2):
            model_card = ModelCard.load(link)
            base_model = model_card.data.get("base_model")
            print(base_model)
      
            #Allows Both
            if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
                raise Exception("Flux LoRA Not Found!")
                
            # Only allow "black-forest-labs/FLUX.1-dev"
            #if base_model != "black-forest-labs/FLUX.1-dev":
                #raise Exception("Only FLUX.1-dev is supported, other LoRA models are not allowed!")
                
            image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
            trigger_word = model_card.data.get("instance_prompt", "")
            image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
            fs = HfFileSystem()
            try:
                list_of_files = fs.ls(link, detail=False)
                for file in list_of_files:
                    if(file.endswith(".safetensors")):
                        safetensors_name = file.split("/")[-1]
                    if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
                      image_elements = file.split("/")
                      image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
            except Exception as e:
              print(e)
              gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
              raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if(link.startswith("https://")):
        if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if(custom_lora):
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if(not existing_item_index):
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)
        
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=False), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center; color: #ffd700;}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%; color: #ffd700;}
.card_internal{display: flex;height: 100px;margin-top: .5em; border: 2px solid #8b4513; background: #3a3a3a;}
.card_internal img{margin-right: 1em; border-radius: 5px;}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #d2691e;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
body {background: url('https://www.transparenttextures.com/patterns/black-linen.png') center; font-family: 'Cinzel', serif; color: #ffd700;}
'''

with gr.Blocks(theme="YTheme/Minecraft", css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
    """
    <div id="title">
        <h1>⚔️ Dungeon Master's Canvas ⚔️</h1>
        <p>
            <strong>Craft the Realm!</strong> Generate images of heroic battles, fantastical creatures, and enchanting landscapes.  Perfect for Dungeon Masters and players alike. <br>
            <a href="https://chatdnd.net" target="_blank">Visit Our Website</a> | 
            <a href="https://buymeacoffee.com/watchoutformike" target="_blank">Support Us</a>
        </p>
    </div>
    """,
    elem_id="title",
)

    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="📜 Your Epic Quest Description",
                lines=1,
                placeholder="Describe your dungeon, creature, or magical item..."
            )
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Cast the Spell!", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="✨ Magical LoRA Artifacts ✨",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(
                    label="✨ Add a Custom Artifact (LoRA) ✨", 
                    placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime"
                )
                gr.Markdown(
                    """[Explore the Tome of LoRA Artifacts 📜](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)""",
                    elem_id="lora_list"
                )
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove Custom Artifact", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="✨ Your D&D Masterpiece ✨")

    with gr.Row():
        with gr.Accordion("🛠️ Advanced Settings ⚙️", open=False):
            with gr.Row():
                input_image = gr.Image(label="📜 Use an Input Image", type="filepath")
                image_strength = gr.Slider(
                    label="⚡ Denoise Strength", 
                    info="Lower values keep the input image’s influence stronger.", 
                    minimum=0.1, maximum=1.0, step=0.01, value=0.75
                )
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(
                        label="✨ Creativity Scale (CFG)",
                        minimum=1, maximum=20, step=0.5, value=3.5
                    )
                    steps = gr.Slider(
                        label="⏱️ Steps for Generation",
                        minimum=1, maximum=50, step=1, value=28
                    )
                
                with gr.Row():
                    width = gr.Slider(
                        label="🖼️ Image Width", 
                        minimum=256, maximum=1536, step=64, value=1024
                    )
                    height = gr.Slider(
                        label="🖼️ Image Height", 
                        minimum=256, maximum=1536, step=64, value=1024
                    )
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="🎲 Randomize Seed")
                    seed = gr.Slider(
                        label="🌟 Seed Value", 
                        minimum=0, maximum=MAX_SEED, step=1, value=0, 
                        randomize=True
                    )
                    lora_scale = gr.Slider(
                        label="🔧 LoRA Intensity",
                        minimum=0, maximum=3, step=0.01, value=0.95
                    )

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()