from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS def embeddings(): print("Generating Embeddings...") return HuggingFaceEmbeddings() def vectorstore(data, embeddings): print("Creating VectorStore...") vectorstore = FAISS.from_documents( documents=data, embedding=embeddings ) retriever = vectorstore.as_retriever( search_type="similarity", search_kwargs={"k": 2} # You can tune this ) return retriever