Spaces:
Sleeping
Sleeping
Changes
Browse files
app.py
CHANGED
|
@@ -1,66 +1,68 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import os
|
| 3 |
-
import tempfile
|
| 4 |
-
from dotenv import load_dotenv
|
| 5 |
-
from langchain_groq import ChatGroq
|
| 6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
-
from langchain.vectorstores import FAISS
|
| 8 |
-
from langchain.chains import RetrievalQA
|
| 9 |
-
from Datapreprocessing import PreprocessingData
|
| 10 |
-
from pdfparsing import ExtractDatafrompdf
|
| 11 |
-
|
| 12 |
-
load_dotenv()
|
| 13 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 14 |
-
|
| 15 |
-
st.set_page_config(page_title="π Chat with PDF", layout="wide")
|
| 16 |
-
|
| 17 |
-
# Sidebar for PDF Upload
|
| 18 |
-
st.sidebar.title("π Upload your PDF")
|
| 19 |
-
uploaded_file = st.sidebar.file_uploader("Choose a PDF", type="pdf")
|
| 20 |
-
|
| 21 |
-
# LLM and Embeddings - cached
|
| 22 |
-
@st.cache_resource
|
| 23 |
-
def get_embeddings():
|
| 24 |
-
return HuggingFaceEmbeddings()
|
| 25 |
-
|
| 26 |
-
@st.cache_resource
|
| 27 |
-
def get_llm():
|
| 28 |
-
return ChatGroq(api_key=GROQ_API_KEY, model="gemma2-9b-it", temperature=0.2)
|
| 29 |
-
|
| 30 |
-
# Build Retrieval Chain
|
| 31 |
-
def get_chain(retriever):
|
| 32 |
-
llm = get_llm()
|
| 33 |
-
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")
|
| 34 |
-
|
| 35 |
-
# PDF processing pipeline
|
| 36 |
-
def process_pdf_and_create_chain(uploaded_file):
|
| 37 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 38 |
-
tmp.write(uploaded_file.read())
|
| 39 |
-
tmp_path = tmp.name
|
| 40 |
-
|
| 41 |
-
documents = ExtractDatafrompdf(tmp_path)
|
| 42 |
-
chunks = PreprocessingData(documents)
|
| 43 |
-
embedder = get_embeddings()
|
| 44 |
-
retriever = FAISS.from_documents(chunks, embedder).as_retriever(search_type="similarity", search_kwargs={"k": 1})
|
| 45 |
-
return get_chain(retriever)
|
| 46 |
-
|
| 47 |
-
# Main UI
|
| 48 |
-
st.title("π Ask Questions About Your PDF")
|
| 49 |
-
|
| 50 |
-
if uploaded_file:
|
| 51 |
-
if "chain" not in st.session_state:
|
| 52 |
-
st.success("PDF uploaded successfully! Processing...")
|
| 53 |
-
with st.spinner("Extracting and chunking PDF..."):
|
| 54 |
-
st.session_state.chain = process_pdf_and_create_chain(uploaded_file)
|
| 55 |
-
st.success("Ready to chat with your PDF!")
|
| 56 |
-
else:
|
| 57 |
-
st.sidebar.info("Using cached PDF session.")
|
| 58 |
-
|
| 59 |
-
user_query = st.text_input("Ask a question about your PDF:")
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
st.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_groq import ChatGroq
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from Datapreprocessing import PreprocessingData
|
| 10 |
+
from pdfparsing import ExtractDatafrompdf
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 14 |
+
|
| 15 |
+
st.set_page_config(page_title="π Chat with PDF", layout="wide")
|
| 16 |
+
|
| 17 |
+
# Sidebar for PDF Upload
|
| 18 |
+
st.sidebar.title("π Upload your PDF")
|
| 19 |
+
uploaded_file = st.sidebar.file_uploader("Choose a PDF", type="pdf")
|
| 20 |
+
|
| 21 |
+
# LLM and Embeddings - cached
|
| 22 |
+
@st.cache_resource
|
| 23 |
+
def get_embeddings():
|
| 24 |
+
return HuggingFaceEmbeddings()
|
| 25 |
+
|
| 26 |
+
@st.cache_resource
|
| 27 |
+
def get_llm():
|
| 28 |
+
return ChatGroq(api_key=GROQ_API_KEY, model="gemma2-9b-it", temperature=0.2)
|
| 29 |
+
|
| 30 |
+
# Build Retrieval Chain
|
| 31 |
+
def get_chain(retriever):
|
| 32 |
+
llm = get_llm()
|
| 33 |
+
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type="stuff")
|
| 34 |
+
|
| 35 |
+
# PDF processing pipeline
|
| 36 |
+
def process_pdf_and_create_chain(uploaded_file):
|
| 37 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 38 |
+
tmp.write(uploaded_file.read())
|
| 39 |
+
tmp_path = tmp.name
|
| 40 |
+
|
| 41 |
+
documents = ExtractDatafrompdf(tmp_path)
|
| 42 |
+
chunks = PreprocessingData(documents)
|
| 43 |
+
embedder = get_embeddings()
|
| 44 |
+
retriever = FAISS.from_documents(chunks, embedder).as_retriever(search_type="similarity", search_kwargs={"k": 1})
|
| 45 |
+
return get_chain(retriever)
|
| 46 |
+
|
| 47 |
+
# Main UI
|
| 48 |
+
st.title("π Ask Questions About Your PDF")
|
| 49 |
+
|
| 50 |
+
if uploaded_file:
|
| 51 |
+
if "chain" not in st.session_state:
|
| 52 |
+
st.success("PDF uploaded successfully! Processing...")
|
| 53 |
+
with st.spinner("Extracting and chunking PDF..."):
|
| 54 |
+
st.session_state.chain = process_pdf_and_create_chain(uploaded_file)
|
| 55 |
+
st.success("Ready to chat with your PDF!")
|
| 56 |
+
else:
|
| 57 |
+
st.sidebar.info("Using cached PDF session.")
|
| 58 |
+
|
| 59 |
+
user_query = st.text_input("Ask a question about your PDF:")
|
| 60 |
+
submit = st.button("Search")
|
| 61 |
+
if submit:
|
| 62 |
+
if user_query:
|
| 63 |
+
with st.spinner("Generating answer..."):
|
| 64 |
+
result = st.session_state.chain.invoke({"query": user_query})
|
| 65 |
+
st.markdown("### π Answer:")
|
| 66 |
+
st.write(result["result"])
|
| 67 |
+
else:
|
| 68 |
+
st.info("π€ Upload a PDF from the sidebar to begin.")
|