from typing import Any, cast import numpy as np import torch from numpy.typing import NDArray from pyopenjtalk import OpenJTalk from torch.overrides import TorchFunctionMode from torch.utils import _device from style_bert_vits2.constants import Languages from style_bert_vits2.logging import logger from style_bert_vits2.models import commons, utils from style_bert_vits2.models.hyper_parameters import HyperParameters from style_bert_vits2.models.models import SynthesizerTrn from style_bert_vits2.models.models_jp_extra import ( SynthesizerTrn as SynthesizerTrnJPExtra, ) from style_bert_vits2.nlp import ( clean_text_with_given_phone_tone, cleaned_text_to_sequence, extract_bert_feature, ) from style_bert_vits2.nlp.symbols import SYMBOLS class EmptyInitOnDevice(TorchFunctionMode): def __init__(self, device=None): # type: ignore self.device = device def __torch_function__(self, func, types, args=(), kwargs=None): # type: ignore kwargs = kwargs or {} if getattr(func, "__module__", None) == "torch.nn.init": if "tensor" in kwargs: return kwargs["tensor"] else: return args[0] if ( self.device is not None and func in _device._device_constructors() # type: ignore and kwargs.get("device") is None ): # type: ignore kwargs["device"] = self.device return func(*args, **kwargs) def get_net_g( model_path: str, version: str, device: str, hps: HyperParameters ) -> SynthesizerTrn | SynthesizerTrnJPExtra: with EmptyInitOnDevice(device): if version.endswith("JP-Extra"): logger.info("Using JP-Extra model") net_g = SynthesizerTrnJPExtra( n_vocab=len(SYMBOLS), spec_channels=hps.data.filter_length // 2 + 1, segment_size=hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, # hps.model 以下のすべての値を引数に渡す use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, use_noise_scaled_mas=hps.model.use_noise_scaled_mas, use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, use_duration_discriminator=hps.model.use_duration_discriminator, use_wavlm_discriminator=hps.model.use_wavlm_discriminator, inter_channels=hps.model.inter_channels, hidden_channels=hps.model.hidden_channels, filter_channels=hps.model.filter_channels, n_heads=hps.model.n_heads, n_layers=hps.model.n_layers, kernel_size=hps.model.kernel_size, p_dropout=hps.model.p_dropout, resblock=hps.model.resblock, resblock_kernel_sizes=hps.model.resblock_kernel_sizes, resblock_dilation_sizes=hps.model.resblock_dilation_sizes, upsample_rates=hps.model.upsample_rates, upsample_initial_channel=hps.model.upsample_initial_channel, upsample_kernel_sizes=hps.model.upsample_kernel_sizes, n_layers_q=hps.model.n_layers_q, use_spectral_norm=hps.model.use_spectral_norm, gin_channels=hps.model.gin_channels, slm=hps.model.slm, ).to(device) else: logger.info("Using normal model") net_g = SynthesizerTrn( n_vocab=len(SYMBOLS), spec_channels=hps.data.filter_length // 2 + 1, segment_size=hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, # hps.model 以下のすべての値を引数に渡す use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder, use_noise_scaled_mas=hps.model.use_noise_scaled_mas, use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder, use_duration_discriminator=hps.model.use_duration_discriminator, use_wavlm_discriminator=hps.model.use_wavlm_discriminator, inter_channels=hps.model.inter_channels, hidden_channels=hps.model.hidden_channels, filter_channels=hps.model.filter_channels, n_heads=hps.model.n_heads, n_layers=hps.model.n_layers, kernel_size=hps.model.kernel_size, p_dropout=hps.model.p_dropout, resblock=hps.model.resblock, resblock_kernel_sizes=hps.model.resblock_kernel_sizes, resblock_dilation_sizes=hps.model.resblock_dilation_sizes, upsample_rates=hps.model.upsample_rates, upsample_initial_channel=hps.model.upsample_initial_channel, upsample_kernel_sizes=hps.model.upsample_kernel_sizes, n_layers_q=hps.model.n_layers_q, use_spectral_norm=hps.model.use_spectral_norm, gin_channels=hps.model.gin_channels, slm=hps.model.slm, ).to(device) net_g.eval() if model_path.endswith(".pth") or model_path.endswith(".pt"): _ = utils.checkpoints.load_checkpoint( model_path, net_g, None, skip_optimizer=True, device=device ) elif model_path.endswith(".safetensors") or model_path.endswith(".aivm"): _ = utils.safetensors.load_safetensors(model_path, net_g, True, device=device) else: raise ValueError(f"Unknown model format: {model_path}") return net_g def get_text( text: str, language_str: Languages, hps: HyperParameters, device: str, assist_text: str | None = None, assist_text_weight: float = 0.7, given_phone: list[str] | None = None, given_tone: list[int] | None = None, jtalk: OpenJTalk | None = None, ) -> tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor ]: use_jp_extra = hps.version.endswith("JP-Extra") norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone( text, language_str, given_phone=given_phone, given_tone=given_tone, use_jp_extra=use_jp_extra, # 推論時のみ呼び出されるので、raise_yomi_error は False に設定 raise_yomi_error=False, jtalk=jtalk, ) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_ori = extract_bert_feature( norm_text, word2ph, language_str, device, assist_text, assist_text_weight, sep_text, # clean_text_with_given_phone_tone() の中間生成物を再利用して効率向上を図る ) del word2ph assert bert_ori.shape[-1] == len(phone), phone if language_str == Languages.ZH: bert = bert_ori ja_bert = torch.zeros(1024, len(phone), device=device) en_bert = torch.zeros(1024, len(phone), device=device) elif language_str == Languages.JP: bert = torch.zeros(1024, len(phone), device=device) ja_bert = bert_ori en_bert = torch.zeros(1024, len(phone), device=device) elif language_str == Languages.EN: bert = torch.zeros(1024, len(phone), device=device) ja_bert = torch.zeros(1024, len(phone), device=device) en_bert = bert_ori else: raise ValueError("language_str should be ZH, JP or EN") assert bert.shape[-1] == len(phone), ( f"Bert seq len {bert.shape[-1]} != {len(phone)}" ) phone = torch.LongTensor(phone).to(device) tone = torch.LongTensor(tone).to(device) language = torch.LongTensor(language).to(device) return bert, ja_bert, en_bert, phone, tone, language def infer( text: str, style_vec: NDArray[Any], sdp_ratio: float, noise_scale: float, noise_scale_w: float, length_scale: float, sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id language: Languages, hps: HyperParameters, net_g: SynthesizerTrn | SynthesizerTrnJPExtra, device: str, skip_start: bool = False, skip_end: bool = False, assist_text: str | None = None, assist_text_weight: float = 0.7, given_phone: list[str] | None = None, given_tone: list[int] | None = None, jtalk: OpenJTalk | None = None, ) -> NDArray[np.float32]: is_jp_extra = hps.version.endswith("JP-Extra") bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, assist_text=assist_text, assist_text_weight=assist_text_weight, given_phone=given_phone, given_tone=given_tone, jtalk=jtalk, ) if skip_start: phones = phones[3:] tones = tones[3:] lang_ids = lang_ids[3:] bert = bert[:, 3:] ja_bert = ja_bert[:, 3:] en_bert = en_bert[:, 3:] if skip_end: phones = phones[:-2] tones = tones[:-2] lang_ids = lang_ids[:-2] bert = bert[:, :-2] ja_bert = ja_bert[:, :-2] en_bert = en_bert[:, :-2] with torch.no_grad(): x_tst = phones.unsqueeze(0) tones = tones.unsqueeze(0) lang_ids = lang_ids.unsqueeze(0) bert = bert.unsqueeze(0) ja_bert = ja_bert.unsqueeze(0) en_bert = en_bert.unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0) del phones sid_tensor = torch.LongTensor([sid]).to(device) if is_jp_extra: output = cast(SynthesizerTrnJPExtra, net_g).infer( x_tst, x_tst_lengths, sid_tensor, tones, lang_ids, ja_bert, style_vec=style_vec_tensor, length_scale=length_scale, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, ) else: output = cast(SynthesizerTrn, net_g).infer( x_tst, x_tst_lengths, sid_tensor, tones, lang_ids, bert, ja_bert, en_bert, style_vec=style_vec_tensor, length_scale=length_scale, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, ) audio = output[0][0, 0].data.cpu().float().numpy() del ( x_tst, tones, lang_ids, bert, x_tst_lengths, sid_tensor, ja_bert, en_bert, style_vec, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return audio