WariHima's picture
upload file
0b85fb9
raw
history blame
11.3 kB
from typing import Any, cast
import numpy as np
import torch
from numpy.typing import NDArray
from pyopenjtalk import OpenJTalk
from torch.overrides import TorchFunctionMode
from torch.utils import _device
from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.models import commons, utils
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.models.models import SynthesizerTrn
from style_bert_vits2.models.models_jp_extra import (
SynthesizerTrn as SynthesizerTrnJPExtra,
)
from style_bert_vits2.nlp import (
clean_text_with_given_phone_tone,
cleaned_text_to_sequence,
extract_bert_feature,
)
from style_bert_vits2.nlp.symbols import SYMBOLS
class EmptyInitOnDevice(TorchFunctionMode):
def __init__(self, device=None): # type: ignore
self.device = device
def __torch_function__(self, func, types, args=(), kwargs=None): # type: ignore
kwargs = kwargs or {}
if getattr(func, "__module__", None) == "torch.nn.init":
if "tensor" in kwargs:
return kwargs["tensor"]
else:
return args[0]
if (
self.device is not None
and func in _device._device_constructors() # type: ignore
and kwargs.get("device") is None
): # type: ignore
kwargs["device"] = self.device
return func(*args, **kwargs)
def get_net_g(
model_path: str, version: str, device: str, hps: HyperParameters
) -> SynthesizerTrn | SynthesizerTrnJPExtra:
with EmptyInitOnDevice(device):
if version.endswith("JP-Extra"):
logger.info("Using JP-Extra model")
net_g = SynthesizerTrnJPExtra(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
else:
logger.info("Using normal model")
net_g = SynthesizerTrn(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
net_g.eval()
if model_path.endswith(".pth") or model_path.endswith(".pt"):
_ = utils.checkpoints.load_checkpoint(
model_path, net_g, None, skip_optimizer=True, device=device
)
elif model_path.endswith(".safetensors") or model_path.endswith(".aivm"):
_ = utils.safetensors.load_safetensors(model_path, net_g, True, device=device)
else:
raise ValueError(f"Unknown model format: {model_path}")
return net_g
def get_text(
text: str,
language_str: Languages,
hps: HyperParameters,
device: str,
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> tuple[
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
]:
use_jp_extra = hps.version.endswith("JP-Extra")
norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone(
text,
language_str,
given_phone=given_phone,
given_tone=given_tone,
use_jp_extra=use_jp_extra,
# 推論時のみ呼び出されるので、raise_yomi_error は False に設定
raise_yomi_error=False,
jtalk=jtalk,
)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = extract_bert_feature(
norm_text,
word2ph,
language_str,
device,
assist_text,
assist_text_weight,
sep_text, # clean_text_with_given_phone_tone() の中間生成物を再利用して効率向上を図る
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == Languages.ZH:
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone), device=device)
en_bert = torch.zeros(1024, len(phone), device=device)
elif language_str == Languages.JP:
bert = torch.zeros(1024, len(phone), device=device)
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone), device=device)
elif language_str == Languages.EN:
bert = torch.zeros(1024, len(phone), device=device)
ja_bert = torch.zeros(1024, len(phone), device=device)
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(phone), (
f"Bert seq len {bert.shape[-1]} != {len(phone)}"
)
phone = torch.LongTensor(phone).to(device)
tone = torch.LongTensor(tone).to(device)
language = torch.LongTensor(language).to(device)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text: str,
style_vec: NDArray[Any],
sdp_ratio: float,
noise_scale: float,
noise_scale_w: float,
length_scale: float,
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id
language: Languages,
hps: HyperParameters,
net_g: SynthesizerTrn | SynthesizerTrnJPExtra,
device: str,
skip_start: bool = False,
skip_end: bool = False,
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> NDArray[np.float32]:
is_jp_extra = hps.version.endswith("JP-Extra")
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
given_phone=given_phone,
given_tone=given_tone,
jtalk=jtalk,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.unsqueeze(0)
tones = tones.unsqueeze(0)
lang_ids = lang_ids.unsqueeze(0)
bert = bert.unsqueeze(0)
ja_bert = ja_bert.unsqueeze(0)
en_bert = en_bert.unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0)
del phones
sid_tensor = torch.LongTensor([sid]).to(device)
if is_jp_extra:
output = cast(SynthesizerTrnJPExtra, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
ja_bert,
style_vec=style_vec_tensor,
length_scale=length_scale,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
)
else:
output = cast(SynthesizerTrn, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec=style_vec_tensor,
length_scale=length_scale,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
)
audio = output[0][0, 0].data.cpu().float().numpy()
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
sid_tensor,
ja_bert,
en_bert,
style_vec,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio