Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import types | |
| from contextlib import contextmanager | |
| from functools import partial | |
| import numpy as np | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.distributed as dist | |
| import torchvision.transforms.functional as TF | |
| from tqdm import tqdm | |
| from .distributed.fsdp import shard_model | |
| from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward | |
| from .distributed.util import get_world_size | |
| from .modules.model import WanModel | |
| from .modules.t5 import T5EncoderModel | |
| from .modules.vae2_1 import Wan2_1_VAE | |
| from .utils.fm_solvers import ( | |
| FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas, | |
| retrieve_timesteps, | |
| ) | |
| from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| class WanI2V: | |
| def __init__( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| device_id=0, | |
| rank=0, | |
| t5_fsdp=False, | |
| dit_fsdp=False, | |
| use_sp=False, | |
| t5_cpu=False, | |
| init_on_cpu=True, | |
| convert_model_dtype=False, | |
| ): | |
| r""" | |
| Initializes the image-to-video generation model components. | |
| Args: | |
| config (EasyDict): | |
| Object containing model parameters initialized from config.py | |
| checkpoint_dir (`str`): | |
| Path to directory containing model checkpoints | |
| device_id (`int`, *optional*, defaults to 0): | |
| Id of target GPU device | |
| rank (`int`, *optional*, defaults to 0): | |
| Process rank for distributed training | |
| t5_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for T5 model | |
| dit_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for DiT model | |
| use_sp (`bool`, *optional*, defaults to False): | |
| Enable distribution strategy of sequence parallel. | |
| t5_cpu (`bool`, *optional*, defaults to False): | |
| Whether to place T5 model on CPU. Only works without t5_fsdp. | |
| init_on_cpu (`bool`, *optional*, defaults to True): | |
| Enable initializing Transformer Model on CPU. Only works without FSDP or USP. | |
| convert_model_dtype (`bool`, *optional*, defaults to False): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| """ | |
| self.device = torch.device(f"cuda:{device_id}") | |
| self.config = config | |
| self.rank = rank | |
| self.t5_cpu = t5_cpu | |
| self.init_on_cpu = init_on_cpu | |
| self.num_train_timesteps = config.num_train_timesteps | |
| self.boundary = config.boundary | |
| self.param_dtype = config.param_dtype | |
| if t5_fsdp or dit_fsdp or use_sp: | |
| self.init_on_cpu = False | |
| shard_fn = partial(shard_model, device_id=device_id) | |
| self.text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=torch.device('cpu'), | |
| checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), | |
| tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
| shard_fn=shard_fn if t5_fsdp else None, | |
| ) | |
| self.vae_stride = config.vae_stride | |
| self.patch_size = config.patch_size | |
| self.vae = Wan2_1_VAE( | |
| vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), | |
| device=self.device) | |
| logging.info(f"Creating WanModel from {checkpoint_dir}") | |
| self.low_noise_model = WanModel.from_pretrained( | |
| checkpoint_dir, subfolder=config.low_noise_checkpoint) | |
| self.low_noise_model = self._configure_model( | |
| model=self.low_noise_model, | |
| use_sp=use_sp, | |
| dit_fsdp=dit_fsdp, | |
| shard_fn=shard_fn, | |
| convert_model_dtype=convert_model_dtype) | |
| self.high_noise_model = WanModel.from_pretrained( | |
| checkpoint_dir, subfolder=config.high_noise_checkpoint) | |
| self.high_noise_model = self._configure_model( | |
| model=self.high_noise_model, | |
| use_sp=use_sp, | |
| dit_fsdp=dit_fsdp, | |
| shard_fn=shard_fn, | |
| convert_model_dtype=convert_model_dtype) | |
| if use_sp: | |
| self.sp_size = get_world_size() | |
| else: | |
| self.sp_size = 1 | |
| self.sample_neg_prompt = config.sample_neg_prompt | |
| def _configure_model(self, model, use_sp, dit_fsdp, shard_fn, | |
| convert_model_dtype): | |
| """ | |
| Configures a model object. This includes setting evaluation modes, | |
| applying distributed parallel strategy, and handling device placement. | |
| Args: | |
| model (torch.nn.Module): | |
| The model instance to configure. | |
| use_sp (`bool`): | |
| Enable distribution strategy of sequence parallel. | |
| dit_fsdp (`bool`): | |
| Enable FSDP sharding for DiT model. | |
| shard_fn (callable): | |
| The function to apply FSDP sharding. | |
| convert_model_dtype (`bool`): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| Returns: | |
| torch.nn.Module: | |
| The configured model. | |
| """ | |
| model.eval().requires_grad_(False) | |
| if use_sp: | |
| for block in model.blocks: | |
| block.self_attn.forward = types.MethodType( | |
| sp_attn_forward, block.self_attn) | |
| model.forward = types.MethodType(sp_dit_forward, model) | |
| if dist.is_initialized(): | |
| dist.barrier() | |
| if dit_fsdp: | |
| model = shard_fn(model) | |
| else: | |
| if convert_model_dtype: | |
| model.to(self.param_dtype) | |
| if not self.init_on_cpu: | |
| model.to(self.device) | |
| return model | |
| def _prepare_model_for_timestep(self, t, boundary, offload_model): | |
| r""" | |
| Prepares and returns the required model for the current timestep. | |
| Args: | |
| t (torch.Tensor): | |
| current timestep. | |
| boundary (`int`): | |
| The timestep threshold. If `t` is at or above this value, | |
| the `high_noise_model` is considered as the required model. | |
| offload_model (`bool`): | |
| A flag intended to control the offloading behavior. | |
| Returns: | |
| torch.nn.Module: | |
| The active model on the target device for the current timestep. | |
| """ | |
| if t.item() >= boundary: | |
| required_model_name = 'high_noise_model' | |
| offload_model_name = 'low_noise_model' | |
| else: | |
| required_model_name = 'low_noise_model' | |
| offload_model_name = 'high_noise_model' | |
| if offload_model or self.init_on_cpu: | |
| if next(getattr( | |
| self, | |
| offload_model_name).parameters()).device.type == 'cuda': | |
| getattr(self, offload_model_name).to('cpu') | |
| if next(getattr( | |
| self, | |
| required_model_name).parameters()).device.type == 'cpu': | |
| getattr(self, required_model_name).to(self.device) | |
| return getattr(self, required_model_name) | |
| def generate(self, | |
| input_prompt, | |
| img, | |
| max_area=720 * 1280, | |
| frame_num=81, | |
| shift=5.0, | |
| sample_solver='unipc', | |
| sampling_steps=40, | |
| guide_scale=5.0, | |
| n_prompt="", | |
| seed=-1, | |
| offload_model=True): | |
| r""" | |
| Generates video frames from input image and text prompt using diffusion process. | |
| Args: | |
| input_prompt (`str`): | |
| Text prompt for content generation. | |
| img (PIL.Image.Image): | |
| Input image tensor. Shape: [3, H, W] | |
| max_area (`int`, *optional*, defaults to 720*1280): | |
| Maximum pixel area for latent space calculation. Controls video resolution scaling | |
| frame_num (`int`, *optional*, defaults to 81): | |
| How many frames to sample from a video. The number should be 4n+1 | |
| shift (`float`, *optional*, defaults to 5.0): | |
| Noise schedule shift parameter. Affects temporal dynamics | |
| [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. | |
| sample_solver (`str`, *optional*, defaults to 'unipc'): | |
| Solver used to sample the video. | |
| sampling_steps (`int`, *optional*, defaults to 40): | |
| Number of diffusion sampling steps. Higher values improve quality but slow generation | |
| guide_scale (`float` or tuple[`float`], *optional*, defaults 5.0): | |
| Classifier-free guidance scale. Controls prompt adherence vs. creativity. | |
| If tuple, the first guide_scale will be used for low noise model and | |
| the second guide_scale will be used for high noise model. | |
| n_prompt (`str`, *optional*, defaults to ""): | |
| Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
| seed (`int`, *optional*, defaults to -1): | |
| Random seed for noise generation. If -1, use random seed | |
| offload_model (`bool`, *optional*, defaults to True): | |
| If True, offloads models to CPU during generation to save VRAM | |
| Returns: | |
| torch.Tensor: | |
| Generated video frames tensor. Dimensions: (C, N H, W) where: | |
| - C: Color channels (3 for RGB) | |
| - N: Number of frames (81) | |
| - H: Frame height (from max_area) | |
| - W: Frame width from max_area) | |
| """ | |
| # preprocess | |
| guide_scale = (guide_scale, guide_scale) if isinstance( | |
| guide_scale, float) else guide_scale | |
| img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device) | |
| F = frame_num | |
| h, w = img.shape[1:] | |
| aspect_ratio = h / w | |
| lat_h = round( | |
| np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] // | |
| self.patch_size[1] * self.patch_size[1]) | |
| lat_w = round( | |
| np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] // | |
| self.patch_size[2] * self.patch_size[2]) | |
| h = lat_h * self.vae_stride[1] | |
| w = lat_w * self.vae_stride[2] | |
| max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // ( | |
| self.patch_size[1] * self.patch_size[2]) | |
| max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size | |
| seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
| seed_g = torch.Generator(device=self.device) | |
| seed_g.manual_seed(seed) | |
| noise = torch.randn( | |
| 16, | |
| 21, | |
| lat_h, | |
| lat_w, | |
| dtype=torch.float32, | |
| generator=seed_g, | |
| device=self.device) | |
| msk = torch.ones(1, 81, lat_h, lat_w, device=self.device) | |
| msk[:, 1:] = 0 | |
| msk = torch.concat([ | |
| torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] | |
| ], | |
| dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1, 2)[0] | |
| if n_prompt == "": | |
| n_prompt = self.sample_neg_prompt | |
| # preprocess | |
| if not self.t5_cpu: | |
| self.text_encoder.model.to(self.device) | |
| context = self.text_encoder([input_prompt], self.device) | |
| context_null = self.text_encoder([n_prompt], self.device) | |
| if offload_model: | |
| self.text_encoder.model.cpu() | |
| else: | |
| context = self.text_encoder([input_prompt], torch.device('cpu')) | |
| context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
| context = [t.to(self.device) for t in context] | |
| context_null = [t.to(self.device) for t in context_null] | |
| y = self.vae.encode([ | |
| torch.concat([ | |
| torch.nn.functional.interpolate( | |
| img[None].cpu(), size=(h, w), mode='bicubic').transpose( | |
| 0, 1), | |
| torch.zeros(3, 80, h, w) | |
| ], | |
| dim=1).to(self.device) | |
| ])[0] | |
| y = torch.concat([msk, y]) | |
| def noop_no_sync(): | |
| yield | |
| no_sync_low_noise = getattr(self.low_noise_model, 'no_sync', | |
| noop_no_sync) | |
| no_sync_high_noise = getattr(self.high_noise_model, 'no_sync', | |
| noop_no_sync) | |
| # evaluation mode | |
| with ( | |
| torch.amp.autocast('cuda', dtype=self.param_dtype), | |
| torch.no_grad(), | |
| no_sync_low_noise(), | |
| no_sync_high_noise(), | |
| ): | |
| boundary = self.boundary * self.num_train_timesteps | |
| if sample_solver == 'unipc': | |
| sample_scheduler = FlowUniPCMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sample_scheduler.set_timesteps( | |
| sampling_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| elif sample_solver == 'dpm++': | |
| sample_scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| sample_scheduler, | |
| device=self.device, | |
| sigmas=sampling_sigmas) | |
| else: | |
| raise NotImplementedError("Unsupported solver.") | |
| # sample videos | |
| latent = noise | |
| arg_c = { | |
| 'context': [context[0]], | |
| 'seq_len': max_seq_len, | |
| 'y': [y], | |
| } | |
| arg_null = { | |
| 'context': context_null, | |
| 'seq_len': max_seq_len, | |
| 'y': [y], | |
| } | |
| if offload_model: | |
| torch.cuda.empty_cache() | |
| for _, t in enumerate(tqdm(timesteps)): | |
| latent_model_input = [latent.to(self.device)] | |
| timestep = [t] | |
| timestep = torch.stack(timestep).to(self.device) | |
| model = self._prepare_model_for_timestep( | |
| t, boundary, offload_model) | |
| sample_guide_scale = guide_scale[1] if t.item( | |
| ) >= boundary else guide_scale[0] | |
| noise_pred_cond = model( | |
| latent_model_input, t=timestep, **arg_c)[0] | |
| if offload_model: | |
| torch.cuda.empty_cache() | |
| noise_pred_uncond = model( | |
| latent_model_input, t=timestep, **arg_null)[0] | |
| if offload_model: | |
| torch.cuda.empty_cache() | |
| noise_pred = noise_pred_uncond + sample_guide_scale * ( | |
| noise_pred_cond - noise_pred_uncond) | |
| temp_x0 = sample_scheduler.step( | |
| noise_pred.unsqueeze(0), | |
| t, | |
| latent.unsqueeze(0), | |
| return_dict=False, | |
| generator=seed_g)[0] | |
| latent = temp_x0.squeeze(0) | |
| x0 = [latent] | |
| del latent_model_input, timestep | |
| if offload_model: | |
| self.low_noise_model.cpu() | |
| self.high_noise_model.cpu() | |
| torch.cuda.empty_cache() | |
| if self.rank == 0: | |
| videos = self.vae.decode(x0) | |
| del noise, latent, x0 | |
| del sample_scheduler | |
| if offload_model: | |
| gc.collect() | |
| torch.cuda.synchronize() | |
| if dist.is_initialized(): | |
| dist.barrier() | |
| return videos[0] if self.rank == 0 else None | |