File size: 9,522 Bytes
309fd4d
b9186cf
 
 
ba7cb71
 
 
 
 
 
 
46b3f7e
ba7cb71
 
 
 
 
908b63e
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb5326
8ff4968
0cb5326
 
 
8ff4968
0cb5326
 
8ff4968
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
6961549
ba7cb71
 
 
 
8ff4968
 
 
 
 
 
 
 
 
 
3113790
8ff4968
 
3113790
8ff4968
 
3113790
8ff4968
 
3113790
8ff4968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3113790
176f1a8
 
8ff4968
 
176f1a8
 
 
 
 
 
3113790
89c4a12
 
 
e7f26f5
3113790
89c4a12
ba7cb71
 
3113790
ba7cb71
 
 
8ff4968
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
8ff4968
 
 
 
3113790
 
 
8ff4968
 
ba7cb71
 
 
 
8ff4968
 
 
ba7cb71
 
 
8ff4968
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908b63e
 
ba7cb71
 
 
 
8b5bd21
ba7cb71
52f499a
86de4f5
c21913a
ba7cb71
 
 
d6627ef
ba7cb71
 
 
 
 
 
 
 
 
 
 
8ff4968
 
 
fc950c9
ba7cb71
 
 
 
8ff4968
 
ba7cb71
 
3113790
 
8ff4968
 
 
3113790
 
 
8ff4968
 
 
3113790
ba7cb71
 
 
 
d6627ef
8ff4968
 
ba7cb71
8ff4968
ba7cb71
 
 
 
 
 
 
8ff4968
ba7cb71
 
 
 
46b3f7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces

import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video

import gc

# --- 1. Global Setup and Model Loading ---

print("Starting Gradio App for Wan 2.2 TI2V-5B...")

# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")

# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121 

# Dimension calculation constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 704
DEFAULT_W_SLIDER_VALUE = 1280
NEW_FORMULA_MAX_AREA = 1280.0 * 704.0

SLIDER_MIN_H, SLIDER_MAX_H = 128, 1280
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1280

# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
    config=cfg,
    checkpoint_dir=ckpt_dir,
    device_id=device_id,
    rank=0,
    t5_fsdp=False,
    dit_fsdp=False,
    use_sp=False,
    t5_cpu=False,
    init_on_cpu=False,
    convert_model_dtype=True,
)
print("Pipeline initialized and ready.")

# --- Helper Functions (from Wan 2.1 Fast demo) ---
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        # Convert numpy array to PIL Image if needed
        if hasattr(uploaded_pil_image, 'shape'):  # numpy array
            pil_image = Image.fromarray(uploaded_pil_image).convert("RGB")
        else:  # already PIL Image
            pil_image = uploaded_pil_image
            
        new_h, new_w = _calculate_new_dimensions_wan(
            pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def get_duration(image, 
                 prompt, 
                 height,
                 width,
                 duration_seconds, 
                 sampling_steps, 
                 guide_scale, 
                 shift, 
                 seed,
                 progress):
    """Calculate dynamic GPU duration based on parameters."""
    if sampling_steps > 35 and duration_seconds >= 2:
        return 120
    elif sampling_steps < 35 or duration_seconds < 2:
        return 105
    else:
        return 90

# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
    image,
    prompt,
    height,
    width,
    duration_seconds,
    sampling_steps,
    guide_scale,
    shift,
    seed,
    progress=gr.Progress(track_tqdm=True)
):
    """The main function to generate video, called by the Gradio interface."""
    if seed == -1:
        seed = random.randint(0, sys.maxsize)

    # Ensure dimensions are multiples of MOD_VALUE
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)

    input_image = None
    if image is not None:
        input_image = Image.fromarray(image).convert("RGB")
        # Resize image to match target dimensions
        input_image = input_image.resize((target_w, target_h))
    
    # Calculate number of frames based on duration
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    # Create size string for the pipeline
    size_str = f"{target_h}*{target_w}"

    video_tensor = pipeline.generate(
        input_prompt=prompt,
        img=input_image,  # Pass None for T2V, Image for I2V
        size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
        max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
        frame_num=num_frames,  # Use calculated frames instead of cfg.frame_num
        shift=shift,
        sample_solver='unipc',
        sampling_steps=int(sampling_steps),
        guide_scale=guide_scale,
        seed=seed,
        offload_model=True
    )

    # Save the video to a temporary file
    video_path = cache_video(
        tensor=video_tensor[None],  # Add a batch dimension
        save_file=None,  # cache_video will create a temp file
        fps=cfg.sample_fps,
        normalize=True,
        value_range=(-1, 1)
    )
    del video_tensor
    gc.collect()
    return video_path


# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}"

with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
    gr.Markdown("# Wan 2.2 TI2V 5B")
    gr.Markdown("generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**,[[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B),[[paper]](https://arxiv.org/abs/2503.20314)")

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="numpy", label="Optional (blank = text-to-image)", elem_id="input_image")
            prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
            duration_input = gr.Slider(
                minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), 
                maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), 
                step=0.1, 
                value=2.0, 
                label="Duration (seconds)", 
                info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
                scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
                shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
                seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)

        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video", elem_id="output_video")
            run_button = gr.Button("Generate Video", variant="primary")
            
    # Add image upload handler
    image_input.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[image_input, height_input, width_input],
        outputs=[height_input, width_input]
    )
    
    image_input.clear(
        fn=handle_image_upload_for_dims_wan,
        inputs=[image_input, height_input, width_input],
        outputs=[height_input, width_input]
    )

    example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
    gr.Examples(
        examples=[
            [example_image_path, "The cat removes the glasses from its eyes.", 1088, 800, 1.5],
            [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
            [None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
        ],
        inputs=[image_input, prompt_input, height_input, width_input, duration_input],
        outputs=video_output,
        fn=generate_video,
        cache_examples=False,
    )

    run_button.click(
        fn=generate_video,
        inputs=[image_input, prompt_input, height_input, width_input, duration_input, steps_input, scale_input, shift_input, seed_input],
        outputs=video_output
    )

if __name__ == "__main__":
    demo.launch()