Spaces:
Sleeping
Sleeping
import gradio as gr | |
import whisper | |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch | |
import torch | |
# Check if GPU is available and set up device map | |
device_map = "auto" # Automatically balance layers across available devices | |
print(f"Using ZeRO-powered device map: {device_map}") | |
# Load the Whisper model using Accelerate with ZeRO | |
model_name = "tiny" # Change to "base", "small", etc., as needed | |
print(f"Loading the Whisper model: {model_name} with ZeRO optimization...") | |
with init_empty_weights(): | |
whisper_model = whisper.load_model(model_name) # Load model structure without weights | |
# Dispatch the model across devices using ZeRO | |
whisper_model = load_checkpoint_and_dispatch( | |
whisper_model, | |
device_map=device_map, | |
dtype=torch.float16 # Use mixed precision for efficiency | |
) | |
print("Model successfully loaded with ZeRO optimization!") | |
# Define the transcription function | |
def transcribe(audio): | |
# Perform transcription using the Whisper model | |
result = whisper_model.transcribe(audio) | |
return result["text"] | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=transcribe, # The function to be called for transcription | |
inputs=gr.Audio(source="microphone", type="filepath", label="Speak into the microphone"), # Input audio | |
outputs=gr.Textbox(label="Transcription"), # Output transcription | |
title="Whisper Speech-to-Text with ZeRO", # Title of the interface | |
description="Record audio using your microphone and get a transcription using the Whisper model optimized with ZeRO." | |
) | |
# Launch the Gradio interface | |
demo.launch() | |