File size: 1,523 Bytes
a2a46d0 ee9acb0 a2a46d0 b94d057 a2a46d0 1fae598 b94d057 a2a46d0 1fae598 a2a46d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import whisper
from transformers import pipeline
# Load the tiny Whisper model
# Check if GPU is available and set device accordingly
device = 0 if torch.cuda.is_available() else -1
if device == 0:
print("Running on GPU")
else:
print("Running on CPU")
whisper_model = whisper.load_model("tiny", device=device)
#model = whisper.load_model("base")
# Load the text summarization model from Hugging Face
summarizer = pipeline(task="summarization", model="facebook/bart-large-cnn", device=device)
# Function to transcribe and summarize the audio file
def transcribe_and_summarize(audio):
# Step 1: Transcribe the audio using Whisper
transcription_result = whisper_model.transcribe(audio)
transcription = transcription_result['text']
# Step 2: Summarize the transcription
summary = summarizer(transcription, min_length=10, max_length=100)
summary_text = summary[0]['summary_text']
return transcription, summary_text
# Define the Gradio interface
interface = gr.Interface(
fn=transcribe_and_summarize, # Function to run
inputs=gr.Audio(type="filepath", label="Upload your audio file"), # Input audio field
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")], # Output fields
title="Whisper Tiny Transcription and Summarization",
description="Upload an audio file, get the transcription from Whisper tiny model and the summarized version using Hugging Face."
)
# Launch the Gradio app
interface.launch(debug=True) |