Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from diffusers import StableDiffusion3Pipeline
|
4 |
import os
|
|
|
5 |
|
6 |
# Retrieve the API token from the environment variable
|
7 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
@@ -11,9 +12,21 @@ if huggingface_token is None:
|
|
11 |
# Check if CUDA is available
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Load the Stable Diffusion model
|
15 |
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
16 |
-
image_gen = StableDiffusion3Pipeline.from_pretrained(repo, text_encoder_3=None, tokenizer_3=None, use_auth_token=huggingface_token)
|
|
|
|
|
|
|
|
|
17 |
image_gen = image_gen.to(device)
|
18 |
|
19 |
def generate_image(prompt, num_inference_steps=50, guidance_scale=7.5):
|
|
|
2 |
import torch
|
3 |
from diffusers import StableDiffusion3Pipeline
|
4 |
import os
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
|
7 |
# Retrieve the API token from the environment variable
|
8 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
12 |
# Check if CUDA is available
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
model_path = snapshot_download(
|
16 |
+
repo_id="stabilityai/stable-diffusion-3-medium",
|
17 |
+
revision="refs/pr/26",
|
18 |
+
repo_type="model",
|
19 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
20 |
+
local_dir="stable-diffusion-3-medium",
|
21 |
+
token=huggingface_token, # yeni bir token-id yazın.
|
22 |
+
)
|
23 |
# Load the Stable Diffusion model
|
24 |
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
25 |
+
#image_gen = StableDiffusion3Pipeline.from_pretrained(repo, text_encoder_3=None, tokenizer_3=None, use_auth_token=huggingface_token)
|
26 |
+
image_gen = StableDiffusion3Pipeline.from_pretrained(repo, text_encoder_3=None, tokenizer_3=None)
|
27 |
+
|
28 |
+
#pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
29 |
+
|
30 |
image_gen = image_gen.to(device)
|
31 |
|
32 |
def generate_image(prompt, num_inference_steps=50, guidance_scale=7.5):
|