Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,656 Bytes
05cc7ca 08ef01f 05cc7ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import spaces
def load_model(model_name):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map=device,
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return_full_text=False,
max_new_tokens=500,
do_sample=False
)
return generator
@spaces.GPU
def generate_text(prompt, model_name):
generator = load_model(model_name)
messages = [{"role": "user", "content": prompt}]
output = generator(messages)
return output[0]["generated_text"]
# Create Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.Dropdown(
choices=["Qwen/Qwen2.5-1.5B-Instruct","microsoft/Phi-3-mini-4k-instruct", "ALLaM-AI/ALLaM-7B-Instruct-preview"],
label="Choose Model",
value="ALLaM-AI/ALLaM-7B-Instruct-preview"
)
],
outputs=gr.Textbox(label="Generated Text"),
title="Text Generator",
description="Enter a prompt and generate text using one of the available models.",
examples=[
["Tell me a funny joke about chickens.", "microsoft/Phi-3-mini-4k-instruct"],
["أخبرني نكتة مضحكة عن الدجاج.", "ALLaM-AI/ALLaM-7B-Instruct-preview"]
]
)
demo.launch()
|