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Abstract

One long-term goal of machine learning research is to pr@dnethods that
are applicable to highly complex tasks, such as perceptigio(, audition), rea-
soning, intelligent control, and other artificially intgient behaviors. We argue
that in order to progress toward this goal, the Machine Liegroommunity must
endeavor to discover algorithms that can learn highly cemfalnctions, with min-
imal need for prior knowledge, and with minimal human intsrtion. We present
mathematical and empirical evidence suggesting that mapylar approaches
to non-parametric learning, particularly kernel methoaig fundamentally lim-
ited in their ability to learn complex high-dimensional @tions. Our analysis
focuses on two problems. First, kernel machines sir@llow architecturesin
which one large layer o§imple template matcheis followed by a single layer
of trainable coefficients. We argue that shallow architexstican be very ineffi-
cient in terms of required number of computational elemants examples. Sec-
ond, we analyze a limitation of kernel machines with a loehlel, linked to the
curse of dimensionality, that applies to supervised, uestged (manifold learn-
ing) and semi-supervised kernel machines. Using empirgsllts on invariant
image recognition tasks, kernel methods are compareddeip architecturesn
which lower-level features or concepts are progressivelpliined into more ab-
stract and higher-level representations. We argue that deshitectures have the
potential to generalize in non-local ways, i.e., beyond gdrate neighbors, and
that this is crucial in order to make progress on the kind ofigiex tasks required
for artificial intelligence.



1 Introduction

Statistical machine learning research has yielded a ricbfsgorithmic and mathe-
matical tools over the last decades, and has given rise tond&uof commercial and
scientific applications. However, some of the initial goaflshis field of research re-
main elusive. A long-term goal of machine learning resedsdo produce methods
that will enable artificially intelligent agents capablele&rning complex behaviors
with minimal human intervention and prior knowledge. Exaespof such complex
behaviors are found in visual perception, auditory petioceptand natural language
processing.

The main objective of this chapter is to discuss fundamdmtaiations of cer-
tain classes of learning algorithms, and point towards @ggres that overcome these
limitations. These limitations arise from two aspects @St algorithmsshallow ar-
chitecture andlocal estimators

We would like our learning algorithms to be efficient in threspects:

1. computational: number of computations during trainingd eluring recognition,

2. statistical: number of examples required for good gdizatéon, especially la-
beled data, and

3. human involvement: amount of human labor necessary lar thie algorithm
to a task, i.e., specify the prior knowledge built into thedabbefore training.
(explicitly, or implicitly through engineering designstiia human-in-the-loop).

The last quarter century has given us flexible non-paramieiairning algorithms that
can learn any continuous input-output mappimgyvidedenough computing resources
and training data. A crucial question is how efficient are sahthe popular learn-
ing methods when they are applied to complex perceptuastasich a visual pattern
recognition with complicated intra-class variability. &lechapter mostly focuses on
computational and statistical efficiency.

Among flexible learning algorithms, we establish a disimttbetweenshallow
architectures anddeep architectures Shallow architectures are best exemplified by
modern kernel machines [Scholkopf et al., 1999], such gp&u Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995]. Theysist of one layer of
fixed kernel functions, whose role is to match the incomintjgoa with templates ex-
tracted from a training set, followed by a linear combinatid the matching scores.
Since the templates are extracted from the training seffitdtdayer of a kernel ma-
chine can be seen as being trained in a somewhat trivial engigpd way. The only
components subject to supervised training are the coefticiaf the linear combina-
tion. !

Deep architectures are perhaps best exemplified by mykilaeural networks
with several hidden layers. In general terms, deep ardhites are composed of mul-
tiple layers of parameterized non-linear modules. Therpatars of every module are

1In SVMs only a subset of the examples are selected as terithtesupport vectors), but this is equiv-
alent to choosing which coefficients of the second layer arezero.



subject to learning. Deep architectures rarely appearémitachine learning litera-
ture; the vast majority of neural network research has fedws shallow architectures
with a single hidden layer, because of the difficulty of traghnetworks with more
than 2 or 3 layers [Tesauro, 1992]. Notable exceptions deluork on convolutional
networks [LeCun et al., 1989, LeCun et al., 1998], and rewennk on Deep Belief
Networks [Hinton et al., 2006].

While shallow architectures have advantages, such as 8ghildy to use convex
loss functions, we show that they also have limitations @etficiencyof the represen-
tation of certain types of function families. Although a nloen of theorems show that
certain shallow architectures (Gaussian kernel machitdsgden layer neural nets,
etc) can approximate any function with arbitrary precisittrey make no statements
as to the efficiency of the representation. Conversely, deelitectures can, in prin-
ciple, represent certain families of functions more effitle (and with better scaling
properties) than shallow ones, but the associated lossiduiscare almost always non
convex.

The chapter starts with a short discussion about taskfépgersus more general
types of learning algorithms. Although the human brain imettimes cited as an ex-
istence proof of a general-purpose learning algorithmeapgnces can be deceiving:
the so-called no-free-lunch theorems [Wolpert, 1996], al as Vapnik’'s necessary
and sufficient conditions for consistency [Vapnik, 199&]selearly show that there
is no such thing as a completely general learning algoritAthpractical learning al-
gorithms are associated with some sort of explicit or inipficior that favors some
functions over others.

Since a quest for a completely general learning method isngdato failure, one
is reduced to searching for learning models that are weléduor a particular type
of tasks. For us, high on the list of useful tasks are thosenttost animals can per-
form effortlessly, such as perception and control, as weliagks that higher animals
and humans can do such as long-term prediction, reasonamnipg, and language
understanding. In short, our aim is to look for learning noeththat bring us closer
to an artificially intelligent agent. What matters the masthis endeavor is howf-
ficientlyour model can capture and represent the required knowletiye efficiency
is measured along three main dimensions: the amount ofrtgpdata required (espe-
cially labeled data), the amount of computing resourcesired to reach a given level
of performance, and most importantly, the amount of huméortaequired to specify
the prior knowledge built into the model before traininggkeitly, or implicitly) This
chapter discusses the scaling properties of various legmaodels, in particular kernel
machines, with respect to those three dimensions, in péatithe first two. Kernel
machines ar@on-parametric learning modelgvhich make apparently weak assump-
tions on the form of the functioyf() to be learned. By non-parametric methods we
mean methods which allow the complexity of the solution wéase (e.g., by hyper-
parameter selection) when more data are available. Thiisdas classical k-nearest-
neighbor algorithms, modern kernel machines, mixture risp@@d multi-layer neural
networks (where the number of hidden units can be selecied tlse data). Our ar-
guments are centered around two limitations of kernel nmeshi the first limitation
applies more generally to shallow architectures, whickuithe neural networks with a
single hidden layer. In Section 3 we consider different gypefunction classes, i.e.,



architectures, including different sub-types of shallowh#tectures. We consider the
trade-off between the depth of the architecture and itsdthenumber of elements
in each layer), thus clarifying the representational latiin of shallow architectures.
The second limitation is more specific and concerns kernehmas with docal ker-
nel. This limitation is studied first informally in Section 3.3 Ibhought experiments
in the use of template matching for visual perception. $ecti then focusses more
formally on local estimators, i.e., in which the predictiffx) at pointz is dominated
by the near neighbors af taken from the training set. This includes kernel machines
in which the kernel is local, like the Gaussian kernel. Thegerithms rely on a prior
expressed as a distance or similarity function betweers diexamples, and encom-
pass classical statistical algorithms as well as modemekenachines. This limitation
is pervasive, not only in classification, regression, anasig estimation, but also in
manifold learning and semi-supervised learning, whereynmaadern methods have
such locality property, and are often explicitly based om ginaph of near neighbors.
Using visual pattern recognition as an example, we illusth@w the shallow nature of
kernel machines leads to fundamentally inefficient repredmns.

Finally, deep architectures are proposed as a way to esoapettie fundamental
limitations above. Section 5 concentrates on the advastage disadvantages of deep
architectures, which involve multiple levels of trainal®dules between input and
output. They can retain the desired flexibility in the learfenctions, and increase the
efficiency of the model along all three dimensions of amotitraining data, amount of
computational resources, and amount of human prior hadago Although a num-
ber of learning algorithms for deep architectures have lzz@ilable for some time,
training such architectures is still largely perceived dgfecult challenge. We discuss
recent approaches to training such deep networks thatfadesvs new breakthroughs
in this direction.

The trade-off between convexity and non-convexity has, nif) tecently, favored
research into learning algorithms with convex optimizagiwoblems. We have found
that non-convex optimization is sometimes more efficieat tonvex optimization.
Non-convex loss functions may be an unavoidable propertyashing complex func-
tions from weak prior knowledge.

2 Learning Models Towards Al

The No-Free-Lunchtheorem for learning algorithms [Wolpert, 1996] statest tha
completely general-purpose learning algorithm can ekisthe sense that for every
learning model there is a data distribution on which it walté poorly (on both training
and test, in the case of finite VC dimension). Every learnirmgleimustcontain im-
plicit or explicit restrictions on the class of functionstht can learn. Among the set
of all possible functions, we are particularly intereste@isubset that contains all the
tasks involved in intelligent behavior. Examples of suctks&ainclude visual percep-
tion, auditory perception, planning, control, etc. Thedms not just include specific
visual perception tasks (e.g human face detection), busehef all the tasks that an
intelligent agent should be able to learn. In the followiweg, will call this set of func-
tionsthe Al-set Because we want to achieve Al, we prioritize those taskisatein



the Al-set.

Although we may like to think that the human brain is somevgeateral-purpose,
it is extremely restricted in its ability to learn high-dimsonal functions. The brains
of humans and higher animals, with their learning abiljten potentially implement
the Al-set, and constitute a working proof of the feasipitiff Al. We advance that
the Al-set is a tiny subset of the set of all possible functjdout the specification of
this tiny subset may be easier than it appears. To illusthésepoint, we will use the
example first proposed by [LeCun and Denker, 1992]. The odiorebetween the
retina and the visual areas in the brain gets wired up relgtiate in embryogenesis.
If one makes the apparently reasonable assumption thabsdile permutations of
the millions of fibers in the optic nerve are equiprobableyé¢his not enough bits in
the genome to encode the correct wiring, and no lifetime lemgugh to learn it. The
flat prior assumption must be rejected: some wiring must bwl&r to specify (or
more likely) than others. In what seems like an incrediblstifoate coincidence, a
particularly good (if not “correct”) wiring pattern happemo be one that preserves
topology. Coincidentally, this wiring pattern happens ®\ery simple to describe
in almost any language (for example, the biochemical lagguesed by biology can
easily specify topology-preserving wiring patterns thghwoncentration gradients of
nerve growth factors). How can we be so fortunate that theecoprior be so simple to
describe, yet so informative? LeCun and Denker [1992] pmitithat the brain exists
in the very same physical world for which it needs to builéemial models. Hence the
specification of good priors for modeling the world happebecsimple in that world
(the dimensionality and topology of the world is common teél)oBecause of this, we
are allowed to hope that the Al-set, while a tiny subset opa#isible functions, may
be specified with a relatively small amount of information.

In practice, prior knowledge can be embedded in a learnindainoy specifying
three essential components:

1. The representation of the data: pre-processing, feakractions, etc.

2. Thearchitectureof the machine: the family of functions that the machine can
implement and its parameterization.

3. Theloss function and regularizehow different functions in the family are rated,
given a set of training samples, and which functions arespred in the absence
of training samples (prior or regularizer).

Inspired by [Hinton, To appear. 2007], we classify machierting research strate-
gies in the pursuit of Al into three categories. Onel&eatism “Since no good pa-

rameterization of the Al-set is currently available, leffsecify a much smaller set for
each specific task through careful hand-design of the pregssing, the architecture,
and the regularizer”. If task-specific designs must be @elvisy hand for each new
task, achieving Al will require an overwhelming amount ofian effort. Neverthe-

less, this constitutes the most popular approach for apglyiachine learning to new
problems: design a clever pre-processing (or data repia@sam scheme), so that a
standard learning model (such as an SVM) will be able to ldartask. A somewhat
similar approach is to specify the task-specific prior krexge in the structure of a



graphical modelby explicitly representing important intermediate feagiand con-
cepts through latent variables whose functional dependenmbserved variables is
hard-wired. Much of the research in graphical models [Jord898] (especially of
the parametric type) follows this approach. Both of thesgr@gches, the kernel ap-
proach with human-designed kernels or features, and thEhgrad models approach
with human-designed dependency structure and semant&esesy attractive in the
short term because they often yield quick results in makiogiess on a specific task,
taking advantage of human ingenuity and implicit or expkoiowledge about the task,
and requiring small amounts of labeled data.

The second strategy deniat “Even with a generic kernel such as the Gaussian
kernel, kernel machines can approximate any function, agdlarization (with the
bounds) guarantee generalization. Why would we need arny#lse?” This belief
contradicts the no free lunch theorem. Although kernel rmeeshcan represent any
labeling of a particular training set, they cefficiently represena very small and
very specific subset of functions, which the following sex$ of this chapter will at-
tempt to characterize. Whether this small subset covergga lgart of the Al-set is
very dubious, as we will show. In general, what we think of esegic learning algo-
rithms can only work well with certain types of data repreaéons and not so well
with others. They can in fact represent certain types oftions efficiently, and not
others. While the clever preprocessing/generic learniggrthm approach may be
useful for solving specific problems, it brings about liffegress on the road to Al.
How can we hope to solve the wide variety of tasks requirecctoeae Al with this
labor-intensive approach? More importantly, how can we bepe to integrate each
of these separately-built, separately-trained, speeidlmodules into a coherent ar-
tificially intelligent system? Even if we could build thoseodules, we would need
another learning paradigm to be able to integrate them icttharent system.

The third strategy isptimism “let’s look for learning models that can be applied to
the largest possible subset of the Al-set, while requirimggmallest possible amount
of additional hand-specified knowledge for each specifik teithin the Al-set”. The
question becomes: is there a parameterization of the Atha¢tan be efficiently im-
plemented with computer technology?

Consider for example the problem of object recognition impater vision: we
could be interested in building recognizers for at leasessthousand categories of
objects. Should we have specialized algorithms for eacm&ly, in natural language
processing, the focus of much current research is on devégppropriate features for
specific tasks such as recognizing or parsing text of a pdatic¢ype (such as spam
emalil, job ads, financial news, etc). Are we going to have tahitlabor-intensive
work for all the possible types of text? our system will notugey smart if we have
to manually engineer new patches each time new a type of teww types of object
category must be processed. If there exist more generpbparearning models, at
least general enough to handle most of the tasks that anandlBumans can handle,
then searching for them may save us a considerable amouati@fih the long run.

As discussed in the next section, a mathematically conmemiay to characterize
the kind of complex task needed for Al is that they involverteiag highly non-linear
functions with many variations (i.e., whose derivative gpas direction often). This
is problematic in conjunction with a prior that smooth fuoos are more likely, i.e.,



having few or small variations. We megnto be smooth when the value ¢fx) and
of its derivativef’(z) are close to the values ¢fxz + A) and f/(z + A) respectively
whenz andx + A are close as defined by a kernel or a distance. This chaptanees
several arguments that the smoothness prior alone is iciguffio learn highly-varying
functions. This is intimately related to the curse of dimenality, but as we find
throughout our investigation, it is not the number of dimens so much as the amount
of variation that matters. A one-dimensional function cbibé difficult to learn, and
many high-dimensional functions can be approximated wsdlugh with a smooth
function, so that non-parametric methods relying only am $mooth prior can still
give good results.

We callstrong priorsa type of prior knowledge that gives high probability (or low
complexity) to a very small set of functions (generally tethto a small set of tasks),
andbroad priorsa type of prior knowledge that give moderately high prokigbtb
a wider set of relevant functions (which may cover a largesstibf tasks within the
Al-set). Strong priors are task-specific, while broad iare more related to the
general structure of our world. We could prematurely canjexthat if a function
has many local variations (hence is not very smooth), thénrbt learnable unless
strong prior knowledge is at hand. Fortunately, this is moet First, there is no
reason to believe that smoothness priors should have aasgtatius over other types
of priors. Using smoothness priors when we know that thetfans we want to learn
are non-smooth would seem counter-productive. Other bpoads are possible. A
simple way to define a prior is to define a language (e.g., arprogning language)
with which we express functions, and favor functions thateha low Kolmogorov
complexity in that language, i.e. functions whose prograshiort. Consider using the
C programming language (along with standard librariese¢bate with it) to define our
prior, and learning functions such a&r) = sin(x) (with = a real value) ogy(z) =
parity(z) (with x a binary vector of fixed dimension). These would be relagieslsy
to learn with a small number of samples because their deierils extremely short in
C and they are very probable under the corresponding pespite the fact that they
are highly non-smooth. We do not advocate the explicit us@trhogorov complexity
in a conventional programming language to design new legrigorithms, but we use
this example to illustrate that it is possible to learn app#ly complex functions (in
the sense they vary a lot) using broad priors, by using a acatlearning algorithm,
corresponding to priors other than the smoothness prids. thbught example and the
study of toy problems like the parity problem in the rest @ tthapter also shows that
the main challenge is to design learning algorithms thatéscover representations of
the data that compactly describe regularities inTihis is in contrast with the approach
of enumerating the variations present in the training data, hoping to rely on local
smoothness to correctly fill in the space between the trgisgmples.

As we mentioned earlier, there may exist broad priors, wetnsingly simple de-
scription, that greatly reduce the space of accessibldifurgin appropriate ways. In
visual systems, an example of such a broad prior, which sired by Nature’s bias
towards retinotopic mappings, is the kind of connectivised in convolutional net-
works for visual pattern recognition [LeCun et al., 1989Cu@a et al., 1998]. This
will be examined in detail in section 6. Another example abdat prior, which we
discuss in section 5, is that the functions to be learnedldhimiexpressible as multi-



ple levels of composition of simpler functions, whelifferent levels of functions can
be viewed as different levels of abstractidrhe notion of “concept” and of “abstrac-
tion” that we talk about is rather broad and simply means d@anquantity strongly
dependent of the observed data, and useful in building a&septation of its distri-
bution that generalises well. Functions at lower levelshstieaction should be found
useful for capturing some simpler aspects of the data digtdan, so that it is possi-
ble to first learn the simpler functions and then compose tteelearn more abstract
concepts. Animals and humans do learn in this way, with @mpbncepts earlier in
life, and higher-level abstractions later, expressed iimseof the previously learned
concepts. Not all functions can be decomposed in this wayjlomans appear to have
such a constraint. If such a hierarchy did not exist, humansldvbe able to learn
new concepts in any order. Hence we can hope that this typeasfmay be useful to
help cover the Al-set, but yet specific enough to exclude Hst majority of useless
functions.

It is a thesis of the present work that learning algorithreg thuild such deeply
layered architectures offer a promising avenue for scaiiraghine learning towards
Al. Another related thesis is that one should not considerléinge variety of tasks
separately, but as different aspects of a more generalgrobthat of learning the
basic structure of the world, as seen say through the eyesaasaf a growing animal
or a young child. This is an instance of multi-task learnirtgeve it is clear that the
different tasks share a strong commonality. This allowsousadpe that after training
such a system on a large variety of tasks in the Al-set, theesysay generalize to
a new task from only a few labeled examples. We hypothesaeniany tasks in the
Al-set may be built around commaepresentationswhich can be understood as a set
of interrelated concepts.

If our goal is to build a learning machine for the Al-set, oasearch should con-
centrate on devising learning models with the followingfieas:

e A highly flexible way to specify prior knowledge, hence a ldag algorithm
that can function with a large repertoire of architectures.

e A learning algorithm that can deal with deep architectuiresyhich a decision
involves the manipulation of many intermediate conceptd,raultiple levels of
non-linear steps.

e A learning algorithm that can handle large families of fuocs, parameterized
with millions of individual parameters.

e A learning algorithm that can be trained efficiently evengewhhe number of
training examples becomes very large. This excludes legmadgorithms requir-
ing to store and iterate multiple times over the whole tragnéet, or for which
the amount of computations per example increases as momngpée@are seen.
This strongly suggest the use of on-line learning.

e A learning algorithm that can discover concepts that carhbeesl easily among
multiple tasks and multiple modalities (multi-task leam), and that can take
advantage of large amounts of unlabeled data (semi-sigaeriearning).



3 Learning Architectures, Shallow and Deep

3.1 Architecture Types

In this section, we define the notions of shallow and deepit@atres. An informal
discussion of their relative advantages and disadvantageesented using examples.
A more formal discussion of the limitations of shallow atelstures with local smooth-
ness (which includes most modern kernel methods) is givémeimext section.

Following the tradition of the classic bo®erceptrongMinsky and Papert, 1969],
it is instructive to categorize different types of learniaghitectures and to analyze
their limitations and advantages. To fix ideas, considesiimple case of classification
in which a discrete label is produced by the learning machiref (z, w), wherezx is
the input pattern, and a parameter which indexes the family of functich¢hat can
be implemented by the architectufe= { (-, w), w € W}.

A A A

Weighted Weighted Weighted
Sum Sum Sum
Fixed Basis Template imple Trainable
Functions Matchers Basis Functions

A A A

Figure 1: Different types of shallow architectures. (a) 8y fixed preprocessing and
linear predictor; (b) Type-2: template matchers and lingadictor (kernel machine);

(c) Type-3: simple trainable basis functions and lineadjmter (neural net with one

hidden layer, RBF network).

Traditional Perceptrons, like many currently popular téag models, areshal-
low architectures Different types of shallow architectures are represeintdidure 1.
Type-1 architectures have fixed preprocessing in the figgrige.g., Perceptrons).
Type-2 architectures have template matchers in the firsrlgg/g., kernel machines).
Type-3 architectures have simple trainable basis funstiothe first layer (e.g., neural
net with one hidden layer, RBF network). All three have adingansformation in the
second layer.

3.1.1 Shallow Architecture Type 1

Fixed pre-processing plus linear predictor, figure 1(&he simplest shallow archi-
tecture is composed of a fixed preprocessing layer (somgtoaked features or ba-
sis functions), followed by a linear predictor. The type iokhr predictor used, and
the way it is trained is unspecified (maximum-margin, lagistgression, Perceptron,



squared error regression....). The fanillys linearly parameterized in the parameter
vector: f(x) = Zle w;¢;(x). This type of architecture is widely used in practi-
cal applications. Since the pre-processing is fixed (and{taafted), it is necessarily
task-specific in practice. It is possible to imagine a shatligpe-1 machine that would
parameterize the complete Al-set. For example, we couldiineea machine in which
each feature is a member of the Al-set, hence each partiméanber of the Al-set
can be represented with a weight vector containing all zemsept for a single 1 at
the right place. While there probably exist more compactsmaylinearly parame-
terize the entire Al-set, the number of necessary featucegdisurely be prohibitive.
More importantly, we do not know explicitly the functionstbie Al-set, so this is not
practical.

3.1.2 Shallow Architecture Type 2

Template matchers plus linear predictor, figure 1(Next on the scale of adaptability
is the traditional kernel machine architecture. The pregssing is a vector of values
resulting from the application of a kernel functidf(z, ;) to each training sample
f@) = b+ X" | a;K(x,2;), wheren is the number of training samples, the pa-
rameterw contains all they; and the bia$. In effect, the first layer can be seen as
a series of template matchers in which the templates areaiméng samples. Type-2
architectures can be seen as special forms of Type-1 actimiés in which the features
are data-dependent, which is to s&yx) = K (x, z;). Thisis a simple form of unsu-
pervised learning, for the first layer. Through the famkemnel trick(see [Scholkopf
etal., 1999]), Type-2 architectures can be seen as a compgaif representing Type-
1 architectures, including some that may be too large to betigal. If the kernel
function satisfies the Mercer condition it can be expressezhdnner product between
feature vectord(y(z, z;) =< ¢(z), ¢(x;) >, giving us a linear relation between the
parameter vectors in both formulations:for Type-1 architectures i$_, c;¢(z;). A
very attractive feature of such architectures is that feess common loss functions
(e.g., squared error, margin loss) training them involvesravex optimization program.
While these properties are largely perceived as the magimddernel methods, they
should not distract us from the fact that the first layer of enkémachine is often
just a series of template matchers. In most kernel machtheskernel is used as a
kind of template matchers, but other choices are possibkndXask-specific prior
knowledge, one can design a kernel that incorporates theafgstractions for the task.
This comes at the cost of lower efficiency in terms of humamilaWwhen a kernel
acts like a template matcher, we callatal: K(x,z;) discriminates between values
of z that are neax; and those that are not. Some of the mathematical resultssin th
chapter focus on the Gaussian kernel, where nearnessponadsto small Euclidean
distance. One could say that one of the main issues with keraehine with local
kernels is that they aié@tle more than template matcherk is possible to use kernels
that are non-local yet not task-specific, such as the lineardts and polynomial ker-
nels. However, most practitioners have been preferingfikernels or local kernels.
Linear kernels are type-1 shallow architectures, withrtbbvious limitations. Local
kernels have been popular because they make intuitive §ieiseasier to insert prior
knowledge), while polynomial kernels tend to generalizeyygorly when extrapo-
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lating (e.g., grossly overshooting). The smoothness pmlicit in local kernels is
quite reasonable for a lot of the applications that have lweasidered, whereas the
prior implied by polynomial kernels is less clear. Learnthg kernel would move us
to Type-3 shallow architectures or deep architecturesritestbelow.

3.1.3 Shallow Architecture Type 3

Simple trainable basis functions plus linear predictorufig 1(c) In Type-3 shallow
architectures, the first layer consists of simple basistfans that ar@rainable through
supervised learningThis can improve the efficiency of the function represeoitaby
tuning the basis functions to a task. Simple trainable bfasistions include linear
combinations followed by point-wise non-linearities anduSsian radial-basis func-
tions (RBF). Traditional neural networks with one hiddeyela and RBF networks
belong to that category. Kernel machines in which the kefungition is learned (and
simple) also belong to the shallow Type-3 category. Manysking algorithms belong
to this class as well. Unlike with Types 1 and 2, the output i®a-linear function
of the parameters to be learned. Hence the loss functionsnimed by learning are
likely to be non-convex in the parameters. The definition yieF3 architectures is
somewhat fuzzy, since it relies on the ill-defined conceptsohple” parameterized
basis function.

We should immediately emphasize that the boundary betweevdrious cate-
gories is somewhat fuzzy. For example, training the hiddgear of a one-hidden-layer
neural net (a type-3 shallow architecture) is a non-conveklpm, but one could imag-
ine constructing a hidden layer so large that all possildelén unit functions would
be present from the start. Only the output layer would nedxbtvained. More specif-
ically, when the number of hidden units becomes very largd,an L2 regularizer is
used on the output weights, such a neural net becomes a keacbine, whose kernel
has a simple form that can be computed analytically [Bengal.e2006b]. If we use
the margin loss this becomes an SVM with a particular kerddthough convexity
is only achieved in the mathematical limit of an infinite nuenlof hidden units, we
conjecture that optimization of single-hidden-layer re@¢metworks becomes easier as
the number of hidden units becomes larger. If single-hidldger neural nets have any
advantage over SVMs, it is that they can, in principle, aghigimilar performance
with a smaller first layer (since the parameters of the fingtdacan be optimized for
the task).

Note also that our mathematical results on local kernel iimashare limited in
scope, and most are derived for specific kernels such as thses@a kernel, or for
local kernels (in the sense &f (u, v) being near zero whefu — v|| becomes large).
However, the arguments presented below concerning théosimass of kernel ma-
chines are more general.

3.1.4 Deep Architectures

Deep architectures acempositions of many layers of adaptive non-linear comptsme
in other words, they are cascades of parameterized noarlmedules that contain
trainable parameters at all levels. Deep architecturesvatie representation of wide
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families of functions in a more compact form than shallowh@tectures, because they
can trade space for time (or breadth for depth) while makiregtime-space product
smaller, as discussed below. The outputs of the intermeldigérs are akin to interme-
diate results on the way to computing the final output. Featproduced by the lower
layers represent lower-level abstractions, that are coethtio form high-level features
at the next layer, representing higher-level abstractions

3.2 The Depth-Breadth Tradeoff

Any specific function can be implemented by a suitably desigshallow architec-
ture or by a deep architecture. Similarly, when paramategia family of functions,
we have the choice between shallow or deep architectures.irijportant questions
are: 1. how large is the corresponding architecture (with htany parameters, how
much computation to produce the output); 2. how much maraledrlis involved in
specializing the architecture to the task.

Using a number of examples, we shall demonstrate that debjtentures are often
more efficient (in terms of number of computational compdsa@md parameters) for
representing common functions. Formal analyses of the atatipnal complexity of
shallow circuits can be found in Hastad [1987] or Allende3q@]. They point in the
same direction: shallow circuits are much less expreskive tleep ones.

Let us first consider the task of adding t&&bit binary numbers. The most natural
circuit involves adding the bits pair by pair and propagatime carry. The carry prop-
agation take®) (V) steps, and als©@ (V) hardware resources. Hence the most natural
architecture for binary addition is a deep one, WithV) layers and)(N) elements.
A shallow architecture can implement any boolean formularessed in disjunctive
normal form (DNF), by computing the minterms (AND functidris the first layer,
and the subsequent OR function using a linear classifierésliiold gate) with a low
threshold. Unfortunately, even for simple boolean operetisuch as binary addition
and multiplication, the number of terms can be extremelyddup toO(2"V) for N-bit
inputs in the worst case). The computer industry has in fegbtkd a considerable
amount of effort to optimize the implementation of expoterioolean functions, but
the largest it can put on a single chip has only about 32 ingst(b 4-Gbhit RAM
chip, as of 2006). This is why practical digital circuitsy e for adding or multiplying
two numbers are built with multiple layers of logic gateitt2-layer implementation
(akin to a lookup table) would be prohibitively expensivee3Utgoff and Stracuzzi,
2002] for a previous discussion of this question in the cardgélearning architectures.

Another interesting example is the boolean parity functidre N-bit boolean
parity function can be implemented in at least five ways:

(1) with N daisy-chained XOR gates (dw-layer architecture or a recurrent circuit
with one XOR gate and/ time steps);

(2) with N —1 XOR gates arranged in a treel(g, N layer architecture), for a total
of O(N log N) components;

(3) a DNF formula withO(2") minterms (two layers).
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Architecture 1 has high depth and low breadth (small amofiodmputing elements),
architecture 2 is a good tradeoff between depth and breadth architecture 3 has
high breadth and low depth. If one allows the use of multuinpinary threshold
gates (linear classifiers) in addition to traditional logates, two more architectures
are possible [Minsky and Papert, 1969]:

(4) a 3-layer architecture constructed as follows. Thel@sgtr hasV binary thresh-
old gates (linear classifiers) in which uritdds the input bits and subtraéis
hence computing the predicatg = (SUM_OF_BITS > ¢). The second layer
contains(N — 1)/2 AND gates that computér; AN D(NOT X,1)) for all ¢
that are odd. The last layer is a simple OR gate.

(5) a 2-layer architecture in which the first layer is ideatio that of the 3-layer ar-
chitecture above, and the second layer is a linear thregjadéd(linear classifier)
where the weight for input; is equal to(—2)".

The fourth architecture requires a dynamic range (acciracythe weight linear in

N, while the last one requires a dynamic range exponentidlinA proof that N-

bit parity requiresO(2") gates to be represented by a depth-2 boolean circuit (with
AND, NOT and OR gates) can be found in Ajtai [1983]. In theorifsection 4.1.1)

we state a similar result for learning architectures: aroagptial number of terms is
required with a Gaussian kernel machine in order to reptdlerparity function. In
many instances, space (or breadth) can be traded for tinteefdh) with considerable
advantage.

These negative results may seem reminiscent of the classitts in Minsky and
Papert’s book Perceptrons [Minsky and Papert, 1969]. THuslsl come as no surprise:
shallow architectures (particularly of type 1 and 2) fatbiMinsky and Papert’s general
definition of a Perceptron and are subject to many of its étions.

Another interesting example in which adding layers is beiadfis the fast Fourier
transform algorithm (FFT). Since the discrete Fourierdfarm is a linear operation, it
can be performed by a matrix multiplication wi¥i> complex multiplications, which
can all be performed in parallel, followed ky(N?) additions to collect the sums.
However the FFT algorithm can reduce the total cos%hzﬁlog2 N, multiplications,
with the tradeoff of requiringpg, N sequential steps involving multiplications each.
This example shows that, even with linear functions, addayegrs allows us to take
advantage of the intrinsic regularities in the task.

Because each variable can be either absent, present, dedéga minterm, there
are M = 3V different possible minterms when the circuit hasinputs. The set of
all possible DNF formulae witlt minterms andV inputs has’' (M, k) elements (the
number of combinations df elements from\/). Clearly that set (which is associated
with the set of functions representable witiminterms) grows very fast with. Going
from k — 1 to £ minterms increases the number of combinations by a fddtor &)/ k.
Whenk is not close toM, the size of the set of DNF formulae is exponential in the
number of inputsV. These arguments would suggest that only an exponentially (
N) small fraction of all boolean functions require a less teaponential number of
minterms.
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We claim that most functions that can be represented cotygactleep architec-
tures cannot be represented by a compact shallow architedtnagine representing
the logical operations ovek layers of a logical circuit into a DNF formula. The op-
erations performed by the gates on each of the layers aflg tikgget combined into
a number of minterms that could be exponential in the originanber of layers. To
see this, consider A layer logical circuit where every odd layer has AND gateslitwi
the option of negating arguments) and every even layer haga®#s. Every AND-OR
consecutive layers corresponds to a sum of products in roeglatithmetic. The whole
circuit is the composition of /2 such sums of products, and it is thus a dfeeyporiza-
tion of a formula. In general, when a factored representatiorpsaieded into a single
sum of products, one gets a number of terms that can be exji@rnarthe number
of levels. A similar phenomenon explains why most compactEDdimulae require
an exponential number of terms when written as a Conjuctigamdl Form (CNF)
formula. A survey of more general results in computatioahplexity of boolean cir-
cuits can be found in Allender [1996]. For example, Haste&&B[ show that for all
k, there are depth + 1 circuits of linear size that require exponential size toudate
with depthk circuits. This implies thamost functions representable compactly with
a deep architecture would require a very large number of congmts if represented
with a shallow oneHence restricting ourselves to shallow architecturesilynidmits
the spectrum of functions that can be represented compautlyearned efficiently (at
least in a statistical sense). In particular, highly-vialefunctions (in the sense of hav-
ing high frequencies in their Fourier spectrum) are diffitcalrepresent with a circuit
of depth 2 [Linial et al., 1993]. The results that we presargedction 4 yield a similar
conclusion: representing highly-variable functions vateaussian kernel machine is
very inefficient.

3.3 The Limits of Matching Global Templates

Before diving into the formal analysis of local models, wengare the kernel machines
(Type-2 architectures) with deep architectures using gtesn One of the fundamental
problems in pattern recognition is how to handle intraleariability. Taking the ex-
ample of letter recognition, we can picture the set of allgbssible images of the letter
'E’ on a 20 x 20 pixel grid as a set of continuous manifolds in the pixel sp&cg., a
manifold for lower case and one for cursive). The E’s on a fiedthican be continu-
ously morphed into each other by following a path on the nwdahifThe dimensionality
of the manifold at one location corresponds to the numbenaépendent distortions
that can can be applied to an image while preserving its oage§or handwritten let-
ter categories, the manifold has a high dimension: lettansbe distorted using affine
transforms (6 parameters), distorted using an elastict sledermation (high dimen-
sion), or modified so as to cover the range of possible wriigtes, shapes, and stroke
widths. Even for simple character images, the manifold iy ven-linear, with high
curvature. To convince ourselves of that, consider theesbéthe letter 'W’. Any pixel

in the lower half of the image will go from white to black and #eghagain four times as
the W is shifted horizontally within the image frame fromtl&f right. This is the sign
of a highly non-linear surface. Moreover, manifolds foretcharacter categories are
closely intertwined. Consider the shape of a capital U an® at the same location.
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They have many pixels in common, many more pixels in fact thidh a shifted ver-
sion of the same U. Hence the distance between the U and Ogcttnig smaller than
the distance between two U’s shifted by a few pixels. Anothsight about the high
curvature of these manifolds can be obtained from the examgigure 4: the tangent
vector of the horizontal translation manifold changes pbiyuas we translate the im-
age only one pixel to the right, indicating high curvatures discussed in section 4.2,
many kernel algorithms make an implicit assumption of allgsamooth function (e.g.,
locally linear in the case of SVMs)ound each training example . Hence a high cur-
vature implies the necessity of a large number of trainingngales in order to cover
all the desired twists and turns with locally constant oalbclinear pieces.

This brings us to what we perceive as the main shortcomingmptate-based
methods: a very large number of templates may be requiredderdo cover each
manifold with enough templates to avoid misclassificatidhsrthermore, the number
of necessary templates can grow exponentially with thénisitr dimension of a class-
invariant manifold. The only way to circumvent the problerthaa Type-2 architec-
ture is to design similarity measures for matching temgldkernel functions) such
that two patterns that are on the same manifold are deemeldsirnfortunately,
devising such similarity measures, even for a problem ag lzssdigit recognition,
has proved difficult, despite almost 50 years of active nesed-urthermore, if such a
good task-specific kernel were finally designed, it may bpptiaable to other classes
of problems.

To further illustrate the situation, consider the problerdetecting and identifying
a simple motif (say, of siz8 = 5 x5 pixels) that can appear atdifferent locationsin a
uniformly white image withV pixels (say10° pixels). To solve this problem, a simple
kernel-machine architecture would require one templatde@fmotif for each possi-
ble location. This require®/.D elementary operations. An architecture that allows
for spatially localfeature detectors would merely requseD elementary operations.
We should emphasize that this spatial locality (featurectets that depend on pixels
within a limited radius in the image plane) is distinct fronetlocality of kernel func-
tions (feature detectors that produce large values onlinfart vectors that are within
a limited radius in the input vector space). In fact, spbtialcal feature detectors have
non-local response in the space of input vectors, since thigput is independent of
the input pixels they are not connected to.

A slightly more complicated example is the task of detectimgl recognizing a
pattern composed of two different motifs. Each motif ocegsi pixels, and can appear
at D different locations independently of each other. A kernathine would need a
separate template for each possible occurrence of the twitsme@., N.D? computing
elements. By contrast, a properly designed Type-3 architeevould merely require a
set of local feature detectors for all the positions of thet finotifs, and a similar set for
the second motif. The total amount of elementary operai®asmere2.S.D. We do
not know of any kernel that would allow to efficiently handtangpositional structures.

An even more dire situation occurs if the background is nafoumly white, but
can contain random clutter. A kernel machine would probaiglgd many different
templates containing the desired motifs on top of many difiebackgrounds. By con-
trast, the locally-connected deep architecture desciib#te previous paragraph will
handle this situation just fine. We have verified this type @lfidvior experimentally
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(see examples in section 6).

These thought experiments illustrate the limitations ahkémachines due to the
fact that their first layer is restricted to matching the imiog patterns with global tem-
plates. By contrast, the Type-3 architecture that usesadlydbcal feature detectors
handles the position jitter and the clutter easily and efitty. Both architectures are
shallow, but while each kernel function is activated in a biau@a of the input space,
the spatially local feature detectors are activated by @&g— S)-dimensional sub-
space of the input space (since they only lookSgtixels). Deep architectures with
spatially-local feature detectors are even more efficieee Section 6). Hence the lim-
itations of kernel machines are not just due to their shalkss, but also to thiecal
character of their response function (local in input spa,in the space of image
coordinates).

4 Fundamental Limitation of Local Learning

A large fraction of the recent work in statistical machinarténg has focused on
non-parametric learning algorithms which rely solely, lecigy or implicitly, on a
smoothness prior A smoothness prior favors functiorfssuch that whemr: ~ 2/,
f(z) = f(«'). Additional prior knowledge is expressed by choosing thecepf the
data and the particular notion of similarity between examsgtypically expressed as
a kernel function). This class of learning algorithms imtda most instances of the
kernel machine algorithms [Scholkopf et al., 1999], sustSapport Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995] or Gamgsrocesses [Williams
and Rasmussen, 1996], but also unsupervised learningtalgsrthat attempt to cap-
ture the manifold structure of the data, such as Locally aifembedding [Roweis and
Saul, 2000], Isomap [Tenenbaum et al., 2000], kernel PCAj&opf et al., 1998],
Laplacian Eigenmaps [Belkin and Niyogi, 2003], Manifold &ting [Brand, 2003],
and spectral clusteringalgorithms (see Weiss [1999] for a review). More recently,
there has also been much interest in non-paramsemai-supervised learning algo-
rithms, such as Zhu et al. [2003], Zhou et al. [2004], Belkin et a0(2], Delalleau
et al. [2005], which also fall in this category, and share ynaleas with manifold
learning algorithms.

Since this is a large class of algorithms and one that coasino attract attention,
it is worthwhile to investigate its limitations. Since tleesiethods share many char-
acteristics with classical non-parametric statisticakrméng algorithms — such as the
k-nearest neighbors and the Parzen windows regression asitydestimation algo-
rithms [Duda and Hart, 1973] — which have been shown to stiften the so-called
curse of dimensionalityit is logical to investigate the following question: to vilex-
tent do these modern kernel methods suffer from a simildslpro? See [Hardle et al.,
2004] for a recent and easily accessible exposition of tlsecaf dimensionality for
classical non-parametric methods.

To explore this question, we focus on algorithms in whichldsned function is
expressed in terms of a linear combination of kernel fumstiapplied on the training
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examples:

flx) = b—|—2aiKD(x,xi) 1)
i=1

where we have included an optional bias térnThe setD = {z,...,z,} contains
training examples; = z; for unsupervised learning;;, = (z;,y;) for supervised
learning. Target valug; can take a special missing value for semi-supervised legrni
Theq;’s are scalars chosen by the learning algorithm ugh@ndK p (-, -) is the ker-
nel function, a symmetric function (sometimes expectedetpdsitive semi-definite),
which may be chosen by taking into account all this. A typical kernel function is
the Gaussian kernel,

Ky (u,v) = 67712““71]“2, (2)

with the widtho controlling how local the kernelis. See Bengio et al. [20@4ee that

LLE, Isomap, Laplacian eigenmaps and other spectral mianiéarning algorithms
such as spectral clustering can be generalized and writténe iform of eq. 1 for a test
pointz, but with a different kernel (that is data-dependent, galheperforming a kind

of normalization of a data-independent kernel).

One obtains the consistency of classical non-parametimna&®rs by appropriately
varying the hyper-parameter that controls the localityhef €stimator as increases.
Basically, the kernel should be allowed to become more ane togal, so that statis-
tical bias goes to zero, but the effective number of examiplesved in the estimator
atz (equal tok for the k-nearest neighbor estimator) should increase axreases,
so that statistical variance is also driven to 0. For a widgsslof kernel regression
estimators, the unconditional variance and squared biabeahown to be written as
follows [Hardle et al., 2004]:

Ch
expected error = —— + Cho?,
nod

with C; andC, not depending om nor on the dimensiod. Hence an optimal band-
width is chosen proportional bmszld, and the resulting generalization error (not count-
ing the noise) converges i 4/(*+4)  which becomes very slow for large Consider
for example the increase in number of examples requiredttthgesame level of error,
in 1 dimension versug dimensions. Ifn; is the number of examples required to get a
particular level of error, to get the same level of errotlidimensions requires on the
order ofng”d)/s examples, i.e., theequired number of examples is exponentiadin
For thek-nearest neighbor classifier, a similar result is obtaisehpp and Venkatesh,
1998]:

o
expected error = F, + Z cjnfj/d
j=2

whereFE, is the asymptotic errod is the dimension and the number of examples.
Note however that, if the data distribution is concentrated lower dimensional
manifold, it is themanifold dimensiothat matters. For example, when data lies on
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a smooth lower-dimensional manifold, the only dimensidpdhat matters to &:-
nearest neighbor classifier is the dimensionality of the ifolth since it only uses
the Euclidean distances between the near neighbors. Masyparvised and semi-
supervised learning algorithms rely on a graph with one mueteexample, in which
nearby examples are connected with an edge weighted by ttle&l&an distance be-
tween them. If data lie on a low-dimensional manifold thendgsic distances in this
graph approach geodesic distances on the manifold [Tenembéaal., 2000], as the
number of examples increases. However, convergence catpbaeantially slower for
higher-dimensional manifolds.

4.1 Minimum Number of Bases Required

In this section we present results showing the number ofiredibases (hence of train-
ing examples) of a kernel machine with Gaussian kernel maw dginearly with the
number of variations of the target function that must be wagat in order to achieve a
given error level.

4.1.1 Result for Supervised Learning

The following theorem highlights the number of sign chantes a Gaussian kernel
machine can achieve, when it Wadases (i.e.k support vectors, or at leakttraining
examples).

Theorem 1(Theorem 2 of Schmitt [2002])Let f : R — R computed by a Gaussian
kernel machine (eq. 1) with bases (non-zera;’s). Thenf has at mos2k zeros.

We would like to say something about kernel machineRinand we can do this
simply by considering a straight line iR¢ and the number of sign changes that the
solution functionf can achieve along that line.

Corollary 2. Suppose that the learning problem is such that in order toeaveha given
error level for samples from a distributioR with a Gaussian kernel machine (eq. 1),
thenf must change sign at lea®k times along some straight line (i.e., in the case of a
classifier, the decision surface must be crossed at Basimes by that straight line).
Then the kernel machine must have at ldaktaises (non-zera;’s).

A proof can be found in Bengio et al. [20064a].

Example 3. Consider the decision surface shown in figure 2, which is assiidal
function. One may take advantage of the global regularityetrn it with few pa-
rameters (thus requiring few examples), but with an affiralioation of Gaussians,
corollary 2 implies one would need at legsf | = 10 Gaussians. For more complex
tasks in higher dimension, the complexity of the decisiofasa could quickly make
learning impractical when using such a local kernel method.

Of course, one only seeks to approximate the decision fu§aand does not
necessarily need to learn it perfectly: corollary 2 say$imgt about the existence of
an easier-to-learn decision surface approximaging-or instance, in the example of
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Class -1

decision surface

Class 1

Figure 2: The dotted line crosses the decision surface léstimne thus needs at least
10 Gaussians to learn it with an affine combination of Gaunssiéth same width.

figure 2, the dotted line could turn out to be a good enougmeséid decision surface
if most samples were far from the true decision surface, hisdine can be obtained
with only two Gaussians.

The above theorem tells us that in order to represent a fumtiiat locally varies a
lot, in the sense that its sign along a straight line changes/times, a Gaussian kernel
machine requires many training examples and many compuotdlements. Note that
it says nothing about the dimensionality of the input sphaewe might expect to have
to learn functions that vary more when the data is high-dsi@ral. The next theorem
confirms this suspicion in the special case of dHats parity function:

. d .
parity : (by,...,bq) € {0,1}¢ — { 1_|1f 0%]7;\1/\5:;;5 even
Learning this apparently simple function with Gaussiang@ed on points if0, 1}¢
is actually difficult, in the sense that it requires a numbleGaussians exponential
in d (for a fixed Gaussian width). Note that our corollary 2 doesapply to thed-
bits parity function, so it represents another type of la@alation (not along a line).
However, it is also possible to prove a very strong resulpémity.

d
Theorem 4. Let f(x) = b+ Zle a; K, (x;, x) be an affine combination of Gaussians
with same widthr centered on points; € X,. If f solves the parity problem, then
there are at least? ! non-zero coefficients;.

A proof can be found in Bengio et al. [20064a].
The bound in theorem 4 is tight, since it is possible to sdteearity problem with
exactly2?—! Gaussians and a bias, for instance by using a negative higsidting a
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positive weight on each example satisfyipgrity (z;) = 1. When trained to learn the
parity function, a SVM may learn a function that looks likethpposite of the parity
on test points (while still performing optimally on traigjpoints), but it is an artifact
of the specific geometry of the problem, and only occurs whertriaining set size is
appropriate compared t& ;| = 2¢ (see Bengio et al. [2005] for details). Note that if
the centers of the Gaussians are not restricted anymoregoibts in the training set
(i.e., a Type-3 shallow architecture), it is possible tosedhe parity problem with only
d + 1 Gaussians and no bias [Bengio et al., 2005].

One may argue that parity is a simple discrete toy problenitttd interest. But
even if we have to restrict the analysis to discrete sampl¢8,i1 } for mathematical
reasons, the parity function can be extended to a smoothidunan the|0, 1]¢ hyper-
cube depending only on the continuous stumt . .. + by. Theorem 4 is thus a basis
to argue that the number of Gaussians needed to learn adaneith many variations
in a continuous space may scale linearly with the numberedelvariations, and thus
possibly exponentially in the dimension.

4.1.2 Results for Semi-Supervised Learning

In this section we focus on algorithms of the type describeddent papers [Zhu et al.,
2003, Zhou et al., 2004, Belkin et al., 2004, Delalleau et28105], which are graph-
based, non-parametric, semi-supervised learning afgosit Note that transductive
SVMs [Joachims, 1999], which are another class of semirsigesl algorithms, are
already subject to the limitations of corollary 2. The grdggsed algorithms we con-
sider here can be seen as minimizing the following cost fancas shown in Delalleau
et al. [2005]: R R R R R
C(Y) = Vi = Vil + uY T LY + pe||Y||? ©)

with Y = (41,...,9») the estimated labels on both labeled and unlabeled data, and
L the (un-normalized) graph Laplacian matrix, derived tigloli = D~1/21W D~1/2

from a kernel functior’s between points such that the Gram maitfix with W;; =
K(z;,x;), corresponds to the weights of the edges in the graph/aisa diagonal
matrix containing in-degreeD;; = . W;;. Here,Y; = (41,...,4) is the vector

of estimated labels on thdabeled examples, whose known labels are givenby:
(y1,-..,u), and one may constralrj = Y; as in Zhu et al. [2003] by letting — 0.

We define a region with constant label as a connected subskeé gfraph where all
nodesr; have the same estimated label (sigf and such that no other node can be
added while keeping these properties.

Minimization of the cost criterion of eq. 3 can also be seealabel propagation
algorithm, i.e., labels are spread around labeled examplésnearness being defined
by the structure of the graph, i.e., by the kernel. An inteitriew of label propagation
suggests that a region of the manifold near a labeled (eogitiye) example will be
entirely labeled positively, as the example spreads itsémnite by propagation on the
graph representing the underlying manifold. Thus, the remobregions with constant
label should be on the same order as (or less than) the nurhteyeded examples.
This is easy to see in the case of a sparse Gram midfridVe define a region with
constant label as a connected subset of the graph whereddbnmg have the same
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estimated label (sign af;), and such that no other node can be added while keeping
these properties. The following proposition then holdsértbat it is also true, but
trivial, whenWV defines a fully connected graph).

Proposition 5. After running a label propagation algorithm minimizing tkest of
eg. 3, the number of regions with constant estimated labesisthan (or equal to) the
number of labeled examples.

A proof can be found in Bengio et al. [2006a]. The consequétteat we will need
at least as many labeled examples as there are variations atass, as one moves by
small steps in the neighborhood graph from one contigugismef same label to an-
other. Again we see the same type of non-parametric leaalgagithms with a local
kernel, here in the case of semi-supervised learning: wemeay about as many la-
beled examples as there are variations, even though areaitpitarge number of these
variations could have been characterized more efficiently by their enumeration.

4.2 Smoothness versus Locality: Curse of Dimensionality

Consider a Gaussian SVM and how that estimator changes asdeso, the hyper-
parameter of the Gaussian kernel. For largme would expect the estimated function
to be very smooth, whereas for smallone would expect the estimated function to
be very local, in the sense discussed earlier: the near In@iglofz have dominating
influence in the shape of the predictorat

The following proposition tells us what happens wheis large, or when we con-
sider what a ball whose radius is small comparedl.to

Proposition 6. For the Gaussian kernel classifier, asincreases and becomes large
compared with the diameter of the data, within the smallpsese containing the data

the decision surface becomes lineapif. o; = 0 (e.g., for SVMs), or else the normal
vector of the decision surface becomes a linear combinaifotwo sphere surface

normal vectors, with each sphere centered on a weightedageeof the examples of
the corresponding class.

A proof can be found in Bengio et al. [2006a].

Note that with this proposition we see clearly that whelbecomes large, a kernel
classifier becomes non-local (it approaches a linear €igsi However, this non-
locality is at the price of constraining the decision suefeche very smooth, making it
difficult to model highly varying decision surfaces. Thighe essence of the trade-off
between smoothness and locality in many similar non-patgenaodels (including
the classical ones such as k-nearest-neighbor and Paradows algorithms).

Now consider in what senses a Gaussian kernel machine is(tbag#ing about
o small). Consider a test point that is near the decision surface. We claim that
the orientation of the decision surface is dominated by thighborsz; of = in the
training set, making the predicttmrcal in its derivative If we consider they; fixed (i.e.,
ignoring their dependence on the trainings), then it is obvious that the prediction
f(x) is dominated by the near neighbarsof z, since K (x,z;) — 0 quickly when
||z — x;||/oc becomes large. However, the can be influenced by all the;’s. The
following proposition skirts that issue by looking at thesfiderivative off.
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Figure 3: For local manifold learning algorithms such as | ld6map and kernel PCA,
the manifold tangent plane atis in the span of the difference vectors between test
pointz and its neighbors; in the training set. This makes these algorithms sensitive
to the curse of dimensionality, when the manifold is higheihsional and not very flat.

Proposition 7. For the Gaussian kernel classifier, the normal of the tangdrthe
decision surface at is constrained to approximately lie in the span of the vesctor
(z — x;) with ||z — z;|| not large compared te andx; in the training set.

Sketch of the Proof
The estimator if (z) = >, a; K (x, z;). The normal vector of the tangent plane at
a pointx of the decision surface is

0f(z) = Z aiLi — l)K(x,xl)

Ox o2

Each termis a vector proportionalto the difference veeterz. This sum is dominated
by the terms with||z — ;|| not large compared te. We are thus left wnhw
approximately in the span of the difference vecters z; with z; a near nelghbor of
x. Theq; being only scalars, they only influence the weight of eaclghm®irz; in
that linear combination. Hence althougitiz) can be influenced by; far from x, the
decision surface nearhas a normal vector that is constrained to approximatelylie
the span of the vectors— z; with x; nearx. Q.E.D.

The constraint 01‘7— being in the span of the vectois— z; for neighbors;
of z is not strong if the manifold of interest (e.g., the regiortlué decision surface
with high density) has low dimensionality. Indeed if thatnéinsionality is smaller or
equal to the number of dominating neighbors, then there isomstraint at all. How-
ever, when modeling complex dependencies involving maatofa of variation, the
region of interest may have very high dimension (e.g., aerghe effect of variations
that have arbitrarily large dimension, such as changesuittec] background , etc. in
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images). For such a complex highly-varying target functive also need a very local
predictor ¢ small) in order to accurately represent all the desiredatians. With a
smallo, the number of dominating neighbors will be small compacetthé dimension
of the manifold of interest, making this locality in the dettive a strong constraint,
and allowing the following curse of dimensionality argurnen

This notion of locality in the sense of the derivative allaveto define a ball around
each test point;, containing neighbors that have a dominating influence’§#.
Smoothness within that ball constrains the decision sarfade approximately either
linear (case of SVMs) or a particular quadratic form (thesiea surface normal vector
is a linear combination of two vectors defined by the centena$s of examples of each
class). LetNV be the number of such balls necessary to cover the regiahere the
value of the estimator is desired (e.g., near the targesibecsurface, in the case of
classification problems). Lét be the smallest number such that one needs at teast
examples in each ball to reach error levelThe number of examples thus required
is kN. To see thatV can be exponential in some dimension, consider the maximum
radiusr of all these balls and the radidsof €. If 2 has intrinsic dimensiod, thenN
could be as large as the number of radiusalls that can tile @-dimensional manifold

of radiusR, which is on the order o(%)d.

In Bengio et al. [2005] we present similar results that applynsupervised learn-
ing algorithms such as non-parametric manifold learniggaihms [Roweis and Saul,
2000, Tenenbaum et al., 2000, Scholkopf et al., 1998, Bedkid Niyogi, 2003]. We
find that when the underlying manifold varies a lot in the geofhaving high curva-
ture in many places, then a large number of examples is rdjuitote that the tangent
plane of the manifold is defined by the derivatives of the kemmachine functiorf, for
such algorithms. The core result is that the manifold tahgkme atr is dominated
by terms associated with the near neighbors iof the training set (more precisely it is
constrained to be in the span of the vectors x;, with z; a neighbor ofr). This idea
is illustrated in figure 3. In the case of graph-based maahifedrning algorithms such
as LLE and Isomap, the domination of near examples is pefifectthe derivative is
strictly in the span of the difference vectors with the néigis), because the kernel im-
plicit in these algorithms takes value O for the non-neigeb@/ith such local manifold
learning algorithms, one needs to cover the manifold witalsenough linear patches
with at least/ + 1 examples per patch (whedes the dimension of the manifold). This
argument was previously introduced in Bengio and Monpdg085] to describe the
limitations of neighborhood-based manifold learning aitdpons.

An example that illustrates that many interesting mangaian have high curvature
is that of translation of high-contrast images, shown inrgdl. The same argument
applies to the other geometric invariances of images ofotdje

5 Deep Architectures

The analyzes in the previous sections point to the difficoftiearninghighly-varying
functions These are functions with a large numbewafiations(twists and turns) in
the domain of interest, e.g., they would require a large remolb pieces to be well-
represented by a piecewise-linear approximation. Sineenttmber of pieces can be
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tangent imagem
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high—contrast image

gent directions

Figure 4: The manifold of translations of a high-contrasag® has high curvature. A
smooth manifold is obtained by considering that an imagesaraple on a discrete
grid of an intensity function over a two-dimensional spadée tangent vector for
translation is thus gangent imageand it has high values only on the edges of the ink.
The tangent plane for an image translated by only one pixdddsimilar but changes
abruptly since the edges are also shifted by one pixel. Hénecsvo tangent planes are
almost orthogonal, and the manifold has high curvatureckvis bad for local learning
methods, which must cover the manifold with many small Imggtches to correctly
capture its shape.

made to grow exponentially with the number of input variabthis problem is directly
connected with the well-known curse of dimensionality ftassical non-parametric
learning algorithms (for regression, classification anasity estimation). If the shapes
of all these pieces are unrelated, one needs enough exafopksch piece in order
to generalize properly. However, if these shapes are tetatd can be predicted from
each othemon-local learning algorithmbave the potential to generalize to pieces not
covered by the training set. Such ability would seem necg$salearning in complex
domains such as in the Al-set.

One way to represent a highly-varying function compactlitifflew parameters)
is through the composition of many non-linearities. Suclitiple composition of non-
linearities appear to grant non-local properties to tharegor, in the sense that the
value of f(z) or f’(x) can be strongly dependent on training examples far figm
while at the same time allowing to capture a large number oatians. We have al-
ready discussed parity and other examples (section 3.R¥titwagly suggest that the
learning of more abstract functions is much more efficiergmit is done sequentially,
by composing previously learned concepts. When the reptatien of a concept re-
quires an exponential number of elements, (e.g., with d@halrcuit), the number of
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training examples required to learn the concept may alsmbesictical.

Gaussian processes, SVMs, log-linear models, graph-lmaageifold learning and
graph-based semi-supervised learning algorithms careadkebn as shallow architec-
tures. Although multi-layer neural networks with many les/ean represent deep cir-
cuits, training deep networks has always been seen as sahefw challenge. Until
very recently, empirical studies often found that deep oetagenerally performed no
better, and often worse, than neural networks with one orttidden layers [Tesauro,
1992]. A notable exceptionto this is the convolutional réunetwork architecture [Le-
Cunetal., 1989, LeCun et al., 1998] discussed in the nexibsethat has a sparse con-
nectivity from layer to layer. Despite its importance, thpit of deep network training
has been somewhat neglected by the research community.vidowepromising new
method recently proposed by Hinton et al. [2006] is causirgsargence of interest in
the subject.

A common explanation for the difficulty of deep network learnis the presence
of local minima or plateaus in the loss function. Gradieasdx optimization meth-
ods that start from random initial conditions appear torofjet trapped in poor local
minima or plateaus. The problem seems particularly direnforow networks (with
few hidden units or with a bottleneck) and for networks witamp symmetries (i.e.,
fully-connected networks in which hidden units are excleainye). The solution re-
cently introduced by Hinton et al. [2006] for training deeyéred networks is based
on a greedy, layer-wise unsupervised learning phase . Thegenvised learning phase
provides an initial configuration of the parameters with etha gradient-based super-
vised learning phase is initialized. The main idea of theupesvised phase is to pair
each feed-forward layer with a feed-back layer that attsngpteconstruct the input
of the layer from its output. This reconstruction critergmarantees that most of the
information contained in the input is preserved in the otigthe layer. The resulting
architecture is a so-called Deep Belief Networks (DBN) eAthe initial unsupervised
training of each feed-forward/feed-back pair, the feedvérd half of the network is
refined using a gradient-descent based supervised methol-foopagation). This
training strategyholds great promise as a principle to break through the peoflof
training deep networkdJpper layers of a DBN are supposed to represent more abstrac
concepts that explain the input observatignvhereas lower layers extract low-level
features frome. Lower layers learn simpler concepts first, and higher kayeiild on
them to learn more abstract concepts. This strategy hasendtegn much exploited
in machine learning, but it is at the basis of the greedy layise constructive learning
algorithm for DBNs. More precisely, each layer is trainedimunsupervised way so as
to capture the main features of the distribution it sees pustirlt produces an internal
representation for its input that can be used as input fonéx¢ layer. In a DBN, each
layer is trained as a Restricted Boltzmann Machine [Teh aintbH, 2001] using the
Contrastive Divergence [Hinton, 2002] approximation of thg-likelihood gradient.
The outputs of each layer (i.e., hidden units) constitutecéofed and distributed rep-
resentation that estimates causes for the input of the.|&\fear the layers have been
thus initialized, a final output layer is added on top of théwwek (e.g., predicting
the class probabilities), and the whole deep network istfimed by a gradient-based
optimization of the prediction error. The only differencéwan ordinary multi-layer
neural network resides in the initialization of the para@ngtwhich is not random, but
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is performed through unsupervised training of each layarsequential fashion.

Experiments have been performed on the MNIST and other elstés try to un-
derstand why the Deep Belief Networks are doing much betin either shallow
networks or deep networks with random initialization. Ténessults are reported and
discussed in [Bengio et al., 2007]. Several conclusiondeatirawn from these exper-
iments, among which the following, of particular interestéx

1. Similar results can be obtained by training each layemaaugo-associator in-
stead of a Restricted Boltzmann Machine, suggesting thathergeneral prin-
ciple has been discovered.

2. Test classification error is significantly improved witlick greedy layer-wise
unsupervised initialization over either a shallow networla deep network with
the same architecture but with random initialization. lincalses many possible
hidden layer sizes were tried, and selected based on validatror.

3. When using a greedy layer-wise strategy thaupervisednstead of unsuper-
vised, the results are not as good, probably becaus®it igreedy unsupervised
feature learning extracts more information than stricgessary for the predic-
tion task, whereas greedy supervised feature learningdgreecause it does not
take into account that there will be more layers later) etsréess information
than necessary, which prematurely scuttles efforts todwvgby adding layers.

4. The greedy layer-wise unsupervised strategy helps gkrstion mostly be-
cause it helps the supervised optimization to get startadanbetter solution.

6 Experiments with Visual Pattern Recognition

One essential question when designing a learning archie how to represent in-
variance. While invariance properties are crucial to aayriang task, it is particularly
apparent in visual pattern recognition. In this section wesider several experiments
in handwriting recognition and object recognition to iiége the relative advantages
and disadvantages of kernel methods, shallow archites;tanel deep architectures.

6.1 Representing Invariance

The example of figure 4 shows that the manifold containingrafislated versions of a
characterimage has high curvature. Because the manifioighsy varying, a classifier
that is invariant to translations (i.e., that produces astamt output when the input
moves on the manifold, but changes when the input moves tithanclass manifold)
needs to compute a highly varying function. As we showed éngtrevious section,
template-based methods are inefficient at representirtgyhigrying functions. The
number of such variations may increase exponentially withdimensionality of the
manifolds where the input density concentrates. That d&o@ality is the number of
dimensions along which samples within a category can vary.

We will now describe two sets of results with visual pattexoagnition. The first
part is a survey of results obtained with shallow and deepitctures on the MNIST
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dataset, which contains isolated handwritten digits. Bo®sd part analyzes results of
experiments with the NORB dataset, which contains objeots five different generic
categories, placed on uniform or cluttered backgrounds.

For visual pattern recognition, Type-2 architectures lemeble handling the wide
variability of appearance in pixel images that result froamiations in pose, illumi-
nation, and clutter, unless an impracticably large numlb¢éemplates (e.g., support
vectors) are used. Ad-hoc preprocessing and feature &rtmaan, of course, be used
to mitigate the problem, but at the expense of human labare Hee will concentrate
on methods that deal with raw pixel data and that integrattife extraction as part of
the learning process.

6.2 Convolutional Networks

Convolutional nets are multi-layer architectures in whicé successive layers are de-
signed to learn progressively higher-level features| timtilast layer which represents
categories. All the layers are trained simultaneously teimize an overall loss func-
tion. Unlike with most other models of classification andtpat recognition, there is
no distinct feature extractor and classifier in a convohdaimetwork. All the layers are
similar in nature and trained from data in an integrateditash

The basic module of a convolutional net is composed fefadure detection layer
followed by afeature pooling layer A typical convolutional net is composed of one,
two or three such detection/pooling modules in seriesp¥adld by a classification
module. The input state (and output state) of each layer easebn as a series of
two-dimensional retinotopic arrays called feature maps.lager i, the valuec;j,,
produced by the-th feature detection layer at positi¢n, y) in the j-th feature map
is computed by applying a series of convolution kernels, to feature maps in the
previous layer (with index — 1), and passing the result through a hyperbolic tangent
sigmoid function:

Pi—-1Q;—1
Cijzy = tanh (bv:j YYD wz‘jkpqc(i1>,k,(z+p>,<y+q>> (4)
k

p=0 ¢q=0

whereP; andQ); are the width and height of the convolution kernel. The cdumian
kernel parameters; ;.,,, and the biag;; are subject to learning. A feature detection
layer can be seen as a bank of convolutional filters followgad lpoint-wise non-
linearity. Each filter detects a particular feature at evecation on the input. Hence
spatially translating the input of a feature detection tay#l translate the output but
leave it otherwise unchanged. Translation invariance isnadly built-in by constrain-

INg wijkpg = Wijep o TOrall p,p’, ¢, ¢, i.e., the same parameters are used at different
locations.

A feature pooling layer has the same number of features iméye as the feature
detection layer that precedes it. Each value in a subsagpiap is the average (or
the max) of the values in a local neighborhood in the corredpw feature map in
the previous layer. That average or max is added to a trartzbs, multiplied by a
trainable coefficient, and the result is passed through alinearity (e.g., thetanh
function). The windows are stepped without overlap. Thaneethe maps of a feature
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Figure 5: The architecture of the convolutional net usedtierNORB experiments.
The input is an image pair, the system extracts 8 feature wfagze92 x 92, 8 maps
of 23 x 23, 24 maps ofl 8 x 18, 24 maps of; x 6, and 100 dimensional feature vector.
The feature vector is then transformed into a 5-dimensigeetor in the last layer to
compute the distance with target vectors.

pooling layer are less than the resolution of the maps in theipus layer. The role

of the pooling layer is build a representation that is ineatito small variations of the
positions of features in the input. Alternated layers otdiea detection and feature
pooling can extract features from increasingly large réeegields, with increasing

robustness to irrelevant variabilities of the inputs. Tést Imodule of a convolutional
network is generally a one- or two-layer neural net.

Training a convolutional net can be performed with stodbgsin-line) gradient
descent, computing the gradients with a variant of the loagation method. While
convolutional nets are deep (generally 5 to 7 layers of moeal functions), they do not
seem to suffer from the convergence problems that plaguygfdég-connected neural
nets. While there is no definitive explanation for this, wect that this phenomenon
is linked to the heavily constrained parameterization, al as to the asymmetry of
the architecture.

Convolutional nets are being used commercially in severdéhy-deployed sys-
tems for reading bank check [LeCun et al., 1998], recoggihiandwriting for tablet-
PC, and for detecting faces, people, and objects in videmsairtime.

6.3 The lessons from MNIST

MNIST is a dataset of handwritten digits with 60,000 traghgamples and 10,000 test
samples. Digit images have been size-normalized so as tatliitva 20 x 20 pixel
window, and centered by center of mass i28ax 28 field. With this procedure, the
position of the characters vary slightly from one samplertother. Numerous authors
have reported results on MNIST, allowing precise compagsamong methods. A
small subset of relevant results is listed in table 1. Nofgalbd results on MNIST
are listed in the table. In particular, results obtainechvdéeslanted images or with

28



hand-designed feature extractors were left out.

Results are reported with three convolutional net archites: LeNet-5, LeNet-6,
and the subsampling convolutional net of [Simard et al.,300he input field is a
32 x 32 pixel map in which th&8 x 28 images are centered. In LeNet-5 [LeCun et al.,
1998], the first feature detection layer produces 6 featlapanof size28 x 28 using
5 x 5 convolution kernels. The first feature pooling layer proeki614 x 14 feature
maps through @ x 2 subsampling ratio an2l x 2 receptive fields. The second feature
detection layer produces 16 feature maps of dize< 10 using5 x 5 convolution
kernels, and is followed by a pooling layer withx 2 subsampling. The next layer
produces 100 feature maps of sizex 1 using5 x 5 convolution kernels. The last
layer produces 10 feature maps (one per output categoriet-@ has a very similar
architecture, but the number of feature maps at each legehach larger: 50 feature
maps in the first layer, 50 in the third layer, and 200 featuag@snin the penultimate
layer.

The convolutional net in [Simard et al., 2003] is somewhatilsir to the original
one in [LeCun et al., 1989] in that there is no separate caiosi and subsampling
layers. Each layer computes a convolution with a subsarmpkadt (there is no feature
pooling operation). Their simple convolutional networlst@efeatures at the first layer,
with 5 by 5 kernels and 2 by 2 subsampling, 60 features at tt@sklayer, also with 5
by 5 kernels and 2 by 2 subsampling, 100 features at the et with 5 by 5 kernels,
and 10 output units.

The MNIST samples are highly variable because of writindestiput have little
variation due to position and scale. Hence, it is a datase¢tdtparticularly favorable
for template-based methods. Yet, the error rate yieldedupp8rt Vector Machines
with Gaussian kernel (1.4% error) is only marginally bettem that of a considerably
smaller neural net with a single hidden layer of 800 hiddeitsu{i.6% as reported
by [Simard et al., 2003]), and similar to the results obtdiwith a 3-layer neural net as
reported in [Hinton et al., 2006] (1.53% error). The bestlson the original MNIST
set with a knowledge free method was reported in [Hinton .e2&l06] (0.95% error),
using a Deep Belief NetworkBy knowledge-free method, we meeaethod that has
no prior knowledge of the pictorial nature of the signal. $&onethods would produce
exactly the same result if the input pixels were scramblet wifixed permutation.

Convolutional nets use the pictorial nature of the data,thednvariance of cate-
gories to small geometric distortions. It is a broad (low pdewity) prior, which can
be specified compactly (with a short piece of code). Yet ingpsiabout a considerable
reduction of the ensemble of functions that can be learndte Best convolutional
net on the unmodified MNIST set is LeNet-6, which yields a rdd®.60%. As with
Hinton's results, this result was obtained by initializithg filters in the first layer us-
ing an unsupervised algorithm, prior to training with baarkpagation [Ranzato et al.,
2006]. The same LeNet-6 trained purely supervised fromaanuhitialization yields
0.70% error. A smaller convolutional net, LeNet-5 yield8@%. The same network
was reported to yield 0.95% in [LeCun et al., 1998] with a deralumber of training
iterations.

When the training set is augmented with elastically distxtersions of the training
samples, the test error rate (on the original, non-disddgst set) drops significantly. A
conventional 2-layer neural network with 800 hidden unitdds 0.70% error [Simard
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Classifier Defor- Error Reference
mations %

Knowledge-free methods

2-layer NN, 800 hid. units 1.60 Simard etal. 2003

3-layer NN, 500+300 units 1.53  Hinton et al. 2006

SVM, Gaussian kernel 1.40 Cortesetal. 1992

Unsupervised stacked RBM + backprop 0.95 Hinton et al. 2006
Convolutional networks

Convolutional network LeNet-5 0.80 Ranzato et al. 2006

Convolutional network LeNet-6 0.70 Ranzato et al. 2006

Conv. net. LeNet-6 + unsup. learning 0.60 Ranzato et al. 2006
Training set augmented with affine distortions

2-layer NN, 800 hid. units Affine  1.10 Simard et al. 2003

Virtual SVM, deg. 9 poly Affine 0.80 DeCoste etal. 2002

Convolutional network, Affine  0.60 Simard et al. 2003
Training set augmented with elastic distortions

2-layer NN, 800 hid. units Elastic 0.70  Simard et al. 2003

SVM Gaussian Ker. + on-line training Elastic 0.67 this vokjrohapter 13
Shape context features + elastic K-NN Elastic 0.63 Beloega. 2002
Convolutional network Elastic 0.40 Simard et al. 2003
Conv. net. LeNet-6 Elastic 0.49 Ranzato et al. 2006
Conv. net. LeNet-6 + unsup. learning Elastic 0.39 Ranzahb @006

Table 1. Test error rates of various learning models on thd $ANdataset. Many
results obtained with deslanted images or hand-desigragdréeextractors were left
out.

et al., 2003]. While SVMs slightly outperform 2-layer nelunats on the undistorted
set, the advantage all but disappears on the distorted Behisl volume, Loosli et
al. report 0.67% error with a Gaussian SVM and a sample sefeptocedure. The
number of support vectors in the resulting SVM is considgrigtsger than 800.

Convolutional nets applied to the elastically distortetiasghieve between 0.39%
and 0.49% error, depending on the architecture, the losgium and the number of
training epochs. Simard et al. [2003] reports 0.40% withlasampling convolutional
net. Ranzato et al. [2006] report 0.49% using LeNet-6 witidaan initialization, and
0.39% using LeNet-6 with unsupervised pre-training of th& fayer. This is the best
error rate ever reported on the original MNIST test set.

Hence a deep network, with small dose of prior knowledge eltbé in the archi-
tecture, combined with a learning algorithm that can de#hwiillions of examples,
goes a long way towards improving performance. Not only depdeetworks yield
lower error rates, they are faster to run and faster to trailla@e datasets than the best
kernel methods.

30



ok e B a9
Y £ 8 & 4
LB B

Figure 6: The 25 testing objects in tinermalized-uniforrNORB set. The testing
objects are unseen by the trained system.

6.4 The lessons from NORB

While MNIST is a useful benchmark, its images are simple ghao allow a global
template matching scheme to perform well. Natural image&pbbjects with back-
ground clutter are considerably more challenging. NORBCue et al., 2004] is a
publicly available dataset of object images from 5 geneategories. It contains im-
ages of 50 different toys, with 10 toys in each of the 5 geneategories: four-legged
animals, human figures, airplanes, trucks, and cars. Thebfgts are split into a
training set with 25 objects, and a test set with the remgi@i object (see examples
in Figure 6).

Each object is captured by a stereo camera pair in 162 differews (9 elevations,
18 azimuths) under 6 different illuminations. Two datasigsved from NORB are
used. The first dataset, called th@malized-unifornset, are images of a single object
with a normalized size placed at the center of images witfoumi background. The
training set has 24,300 stereo image pairs of sized% and another 24,300 for testing
(from different object instances).

The second set, thjitered-clutteredset, contains objects with randomly perturbed
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positions, scales, in-plane rotation, brightness, andrasth The objects are placed
on highly cluttered backgrounds and other NORB objectsqalam the periphery. A
6-th category of images is included: background imagesaboinig no objects. Some
examples images of this set are shown in figure 7. Each imatle ifittered-cluttered
set is randomly perturbed so that the objects are at diff@esitions ([-3, +3] pixels
horizontally and vertically), scales (ratio in [0.8, 1,liihage-plane angles<{p°, 5°]),
brightness ([-20, 20] shifts of gray scale), and contrg&ts8( 1.3] gain). The central
object could be occluded by the randomly placed distradforgenerate the training
set, each image was perturbed with 10 different configunatid the above parameters,
which makes up 291,600 image pairs of size 2@88. The testing set has 2 drawings
of perturbations per image, and contains 58,320 pairs.

In the NORB datasets, the only useful and reliable clue istape of the object,
while all the other parameters that affect the appeararessject to variation, or
are designed to contain no useful clue. Parameters thaubjecs to variation are:
viewing angles (pose), lighting conditions. Potentialedwhose impact was elimi-
nated include: color (all images are grayscale), and olgattire. For specific object
recognition tasks, the color and texture information mayhbipful, but for generic
recognition tasks the color and texture information aré¢raisions rather than useful
clues. By preserving natural variabilities and elimingtirrelevant clues and system-
atic biases, NORB can serve as a benchmark dataset in whitidaen regularity that
would unfairly advantage some methods over others can lek use

A six-layer net dubbed LeNet-7, shown in figure 5, was usediénexperiments
with the NORB dataset reported here. The architecture sn¢isdly identical to that
of LeNet-5 and LeNet-6, except of the sizes of the featuresn@pe input is a pair of
96x 96 gray scale images. The first feature detection layer uwssed 5< 5 convolution
kernels to generate 8 feature maps of $izex 92. The first 2 maps take input from
the left image, the next two from the right image, and the daftom both. There
are 308 trainable parameters in this layer. The first fegtoding layer uses a4
subsampling, to produce 8 feature maps of &ize& 23. The second feature detection
layer uses 96 convolution kernels of size@®to output 24 feature maps of siz8 x
18. Each map takes input from 2 monocular maps and 2 binoculpspeach with
a different combination, as shown in figure 8. This configoraits used to combine
features from the stereo image pairs. This layer conta#8M3trainable parameters.
The next pooling layer uses &3 subsampling which outputs 24 feature maps of size
6 x 6. The next layer haé x 6 convolution kernels to produce 100 feature maps of
sizel x 1, and the last layer has 5 units. In the experiments, we alsortreesults
using a hybrid method, which consists in training the coatiohal network in the
conventional way, chopping off the last layer, and trairin@aussian kernel SVM on
the output of the penultimate layer. Many of the results is section were previously
reported in [Huang and LeCun, 2006].

6.5 Results on thenormalized-uniform set

Table 2 shows the results on the smaller NORB dataset witfonmibackground.
This dataset simulates a scenario in which objects can Heqtlgrsegmented from
the background, and is therefore rather unrealistic.
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| | SVM ] Conv Net | SVM/Conv |

test error 11.6% | 10.4% | 6.0% | 6.2% 5.9%
train time
(MIN*GHz) 480 64 448 | 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
fraction of S.V. 28% 28%
dim=80
parameters | ¢=2,000 step size = o=5
C=40 2x107°-2x1077 C=0.01

Table 2: Testing error rates and training/testing timingsttee normalized-uniform
dataset of different methods. The timing is normalized tpdikietical 1GHz single
CPU. The convolutional nets have multiple results withetiint training passes due to
iterative training.

The SVM is composed of five binary SVMs that are trained tosifpone object
category against all other categories. The convolutiopakmained on this set has a
smaller penultimate layer with 80 outputs. The input feasiio the SVM of the hybrid
system are accordingly 80-dimensional vectors.

The timing figures in Table 2 represent the CPU time on a fict&ilGHz CPU. The
results of the convolutional net trained after 2, 14, 10Gpasre listed in the table. The
network is slightly over-trained with more than 30 passesé@gularization was used in
the experiment). The SVM in the hybrid system is trained ahierfeatures extracted
from the network trained with 100 passes. The improvemerth@fcombination is
marginal over the convolutional net alone.

Despite the relative simplicity of the task (no positionigéon, uniform back-
grounds, only 6 types of illuminations), the SVM performthex poorly. Interestingly,
it require a very large amount of CPU time for training anditgs The convolutional
net reaches the same error rate as the SVM with 8 times léaingdime. Further
training halves the error rate. It is interesting that diesfis deep architecture, its
non-convex loss, the total absence of explicit regulanpatand a lack of tight gener-
alization bounds, the convolutional net is both better astier than an SVM.

6.6 Results on thqgittered-cluttered set

The results on this set are shown in table 3. To classify tre€gories, 6 binary (“one
vs. others”) SVM sub-classifiers are trained independeatigh with the full set of
291,600 samples. The training samples are ta% x 108 pixel image pairs turned
into a 23,328-dimensional input vector, with values betw@¢o 255.

SVMs have relatively few free parameters to tune prior tofgey. In the case of
Gaussian kernels, one can choeq&aussian kernel sizes) ant(penalty coefficient)
that yield best results by grid tuning. A rather disappoigtiest error rate of3.3% is
obtained on this set, as shown in the first column of table &. tfdining time depends
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| | SWM | Conv Net | SVM/Conv |

testerror | 43.3% | 16.38% | 7.5% | 7.2% 5.9%

train time

(MiN*GHz) 10,944 420 2,100 | 5,880 330+

test time

per sample| 2.2 0.04 0.06+

(sec*GHz)

#SV 5% 2%
dim=100

parameters| o=10* step size = 0=5

C=40 2x1075-1x1076 c=1

Table 3: Testing error rates and training/testing timingshjittered-cluttereddataset
of different methods. The timing is normalized to hypotbeltilGHz single CPU. The
convolutional nets have multiple results with differemiming passes due to its iterative
training.

heavily on the value of for Gaussian kernel SVMs. The experiments are run on a
64-CPU (1.5GHz) cluster, and the timing information is nafired into a hypothetical
1GHz single CPU to make the measurement meaningful.

For the convolutional net LeNet-7, we listed results aftéecent number of passes
(1, 5, 14) and their timing information. The test error ratdténs out a?.2% after
about 10 passes. No significant over-training was obsearatino early stopping was
performed. One parameter controlling the training procedwst be heuristically cho-
sen: the global step size of the stochastic gradient proee@est results are obtained
by adopting a schedule in which this step size is progrelysilecreased.

A full propagation of one data sample through the networkiireg about 4 mil-
lion multiply-add operations. Parallelizing the convadumial net is relatively simple
since multiple convolutions can be performed simultangoasd each convolution
can be performed independently on sub-regions of the layidre convolutional nets
are computationally very efficient. The training time seadeiblinearly with dataset
size in practice, and the testing can be done in real-timerateaof a few frames per
second.

The third column shows the result of a hybrid system in whioh last layer of
the convolutional net was replaced by a Gaussian SVM afémitrg. The training
and testing features are extracted with the convolutioraltrained after 14 passes.
The penultimate layer of the network has 100 outputs, toeegthe features are 100-
dimensional. The SVMs applied on features extracted franctdnvolutional net yield
an error rate 05.9%, a significantimprovement over either method alone. Byiipoe
rating a learned feature extractor into the kernel functibe SVM was indeed able to
leverage both the ability to use low-level spatially locedtures and at the same time
keep all the advantages of a large margin classifier.

The poor performance of SVM with Gaussian kernels on rawlpienot unex-
pected. As we pointed out in previous sections, a Gaussiarek8VM merely com-
putes matching scores (based on Euclidean distance) betieacoming pattern and
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templates from the training set. This global template matgls very sensitive to vari-
ations in registration, pose, and illumination. More impotly, most of the pixels in
a NORB image are actually on the background clutter, ratieem bn the object to be
recognized. Hence the template matching scores are dadibgtirrelevant variabili-
ties of the background. This points to a crucial deficiencgtahdard kernel methods:
their inability to select relevant input features, and igniorelevant ones.

SVMs have presumed advantages provided by generalizatiomds, capacity con-
trol through margin maximization, a convex loss functiamg aniversal approximation
properties. By contrast, convolutional nets have no gdizateon bounds (beyond the
most general VC bounds), no explicit regularization, a higton-convex loss func-
tion, and no claim to universality. Yet the experimentalifesswith NORB show that
convolutional nets are more accurate than Gaussian SVMsfégter of 6, faster to
train by a large factor (2 to 20), and faster to run by a fact&®m

7 Conclusion

This work was motivated by our requirements for learningpetgms that could ad-
dress the challenge of Al, which include statistical sciitsghcomputational scala-
bility and human-labor scalability. Because the set ofddskolved in Al is widely
diverse, engineering a separate solution for each tasksse@apractical. We have
explored many limitations dternel machineand othershallow architectures Such
architectures are inefficient for representing compleghlyi-varying functions, which
we believe are necessary for Al-related tasks such as antgserception.

One limitation was based on the well-known depth-breaditietoff in circuits de-
sign Hastad [1987]. This suggests that many functions canuszh more efficiently
represented with deeper architectures, often with a mouesber of levels (e.g., log-
arithmic in the number of inputs).

The second limitation regards mathematical consequerfdég @urse of dimen-
sionality. It applies to local kernels such as the Gauss&nd, in whichK (z, z;)
can be seen as a template matcher. It tells us that archigegtlying on local kernels
can be very inefficient at representing functions that haseywariations, i.e., func-
tions that are not globally smooth (but may still be localtyaoth). Indeed, it could be
argued thakernel machines are little more than souped-up templateneas

A third limitation pertains to the computational cost ofdeiag. In theory, the con-
vex optimization associated with kernel machine learniiefplg efficient optimization
and reproducible results. Unfortunately, most currerdidlgms are (at least) quadratic
in the number of examples. This essentially precludes tygitication to very large-
scale datasets for which linear- or sublinear-time alpong are required (particularly
for on-line learning). This problem is somewhat mitigatgd&cent progress with on-
line algorithms for kernel machines (e.g., see [Bordes.e2805]), but there remains
the question of the increase in the number of support veasttse number of examples
increases.

A fourth and most serious limitation, which follows from tfiest (shallowness) and
second (locality) pertains to inefficiency iapresentation Shallow architectures and
local estimators are simply too inefficient (in terms of riegd number of examples and
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adaptable components) to represent many abstract fuscfamterest. Ultimately, this
makes them unaffordable if our goal is to learn the Al-set.dé@ot mean to suggest
that kernel machines have no place in Al. For example, owltsesuggest that com-
bining a deep architecture with a kernel machine that talkeshigher-level learned
representation as input can be quite powerful. Learningrtimsformation from pixels
to high-level features before applying an SVM is in fact a walearn the kernel. We
do suggest that machine learning researchers aiming atltheBlem should investi-
gate architectures that do not have the representationigtions of kernel machines,
and deep architectures are by definition not shallow andlysuat local as well.

Until recently, many believed that training deep architees was too difficult an
optimization problem. However, at least two different aygathes have worked well
in training such architectures: simple gradient desceptieghto convolutional net-
works [LeCun et al., 1989, LeCun et al., 1998] (for signald anages), and more
recently, layer-by-layer unsupervised learning followsdgradient descent [Hinton
et al., 2006, Bengio et al., 2007, Ranzato et al., 2006]. &ekeon deep architectures
is in its infancy, and better learning algorithms for deeghétectures remain to be dis-
covered. Taking a larger perspective on the objective afodisring learning principles
that can lead to Al has been a guiding perspective of this wkhope to have helped
inspire others to seek a solution to the problem of scalingmime learning towards Al.
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Figure 7: Some of the 291,600 examples from jitiered-clutteredtraining set (left
camera images). Each column shows images from one catefyd@ith background
category is added
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Figure 8: The learned convolution kernels of the C3 layee @blumns correspond to
the 24 feature maps output by C3, and the rows correspond &ftature maps output
by the S2 layer. Each feature map draw from 2 monocular magph& &mocular maps

of S2. 96 convolution kernels are use in total.
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