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Abstract

One long-term goal of machine learning research is to produce methods that
are applicable to highly complex tasks, such as perception (vision, audition), rea-
soning, intelligent control, and other artificially intelligent behaviors. We argue
that in order to progress toward this goal, the Machine Learning community must
endeavor to discover algorithms that can learn highly complex functions, with min-
imal need for prior knowledge, and with minimal human intervention. We present
mathematical and empirical evidence suggesting that many popular approaches
to non-parametric learning, particularly kernel methods,are fundamentally lim-
ited in their ability to learn complex high-dimensional functions. Our analysis
focuses on two problems. First, kernel machines areshallow architectures, in
which one large layer ofsimple template matchersis followed by a single layer
of trainable coefficients. We argue that shallow architectures can be very ineffi-
cient in terms of required number of computational elementsand examples. Sec-
ond, we analyze a limitation of kernel machines with a local kernel, linked to the
curse of dimensionality, that applies to supervised, unsupervised (manifold learn-
ing) and semi-supervised kernel machines. Using empiricalresults on invariant
image recognition tasks, kernel methods are compared withdeep architectures, in
which lower-level features or concepts are progressively combined into more ab-
stract and higher-level representations. We argue that deep architectures have the
potential to generalize in non-local ways, i.e., beyond immediate neighbors, and
that this is crucial in order to make progress on the kind of complex tasks required
for artificial intelligence.
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1 Introduction

Statistical machine learning research has yielded a rich set of algorithmic and mathe-
matical tools over the last decades, and has given rise to a number of commercial and
scientific applications. However, some of the initial goalsof this field of research re-
main elusive. A long-term goal of machine learning researchis to produce methods
that will enable artificially intelligent agents capable oflearning complex behaviors
with minimal human intervention and prior knowledge. Examples of such complex
behaviors are found in visual perception, auditory perception, and natural language
processing.

The main objective of this chapter is to discuss fundamentallimitations of cer-
tain classes of learning algorithms, and point towards approaches that overcome these
limitations. These limitations arise from two aspects of these algorithms:shallow ar-
chitecture, andlocal estimators.

We would like our learning algorithms to be efficient in threerespects:

1. computational: number of computations during training and during recognition,

2. statistical: number of examples required for good generalization, especially la-
beled data, and

3. human involvement: amount of human labor necessary to tailor the algorithm
to a task, i.e., specify the prior knowledge built into the model before training.
(explicitly, or implicitly through engineering designs with a human-in-the-loop).

The last quarter century has given us flexible non-parametric learning algorithms that
can learn any continuous input-output mapping,providedenough computing resources
and training data. A crucial question is how efficient are some of the popular learn-
ing methods when they are applied to complex perceptual tasks, such a visual pattern
recognition with complicated intra-class variability. The chapter mostly focuses on
computational and statistical efficiency.

Among flexible learning algorithms, we establish a distinction betweenshallow
architectures, anddeep architectures. Shallow architectures are best exemplified by
modern kernel machines [Schölkopf et al., 1999], such as Support Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995]. They consist of one layer of
fixed kernel functions, whose role is to match the incoming pattern with templates ex-
tracted from a training set, followed by a linear combination of the matching scores.
Since the templates are extracted from the training set, thefirst layer of a kernel ma-
chine can be seen as being trained in a somewhat trivial unsupervised way. The only
components subject to supervised training are the coefficients of the linear combina-
tion. 1

Deep architectures are perhaps best exemplified by multi-layer neural networks
with several hidden layers. In general terms, deep architectures are composed of mul-
tiple layers of parameterized non-linear modules. The parameters of every module are

1In SVMs only a subset of the examples are selected as templates (the support vectors), but this is equiv-
alent to choosing which coefficients of the second layer are non-zero.
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subject to learning. Deep architectures rarely appear in the machine learning litera-
ture; the vast majority of neural network research has focused on shallow architectures
with a single hidden layer, because of the difficulty of training networks with more
than 2 or 3 layers [Tesauro, 1992]. Notable exceptions include work on convolutional
networks [LeCun et al., 1989, LeCun et al., 1998], and recentwork on Deep Belief
Networks [Hinton et al., 2006].

While shallow architectures have advantages, such as the possibility to use convex
loss functions, we show that they also have limitations in theefficiencyof the represen-
tation of certain types of function families. Although a number of theorems show that
certain shallow architectures (Gaussian kernel machines,1-hidden layer neural nets,
etc) can approximate any function with arbitrary precision, they make no statements
as to the efficiency of the representation. Conversely, deeparchitectures can, in prin-
ciple, represent certain families of functions more efficiently (and with better scaling
properties) than shallow ones, but the associated loss functions are almost always non
convex.

The chapter starts with a short discussion about task-specific versus more general
types of learning algorithms. Although the human brain is sometimes cited as an ex-
istence proof of a general-purpose learning algorithm, appearances can be deceiving:
the so-called no-free-lunch theorems [Wolpert, 1996], as well as Vapnik’s necessary
and sufficient conditions for consistency [Vapnik, 1998, see], clearly show that there
is no such thing as a completely general learning algorithm.All practical learning al-
gorithms are associated with some sort of explicit or implicit prior that favors some
functions over others.

Since a quest for a completely general learning method is doomed to failure, one
is reduced to searching for learning models that are well suited for a particular type
of tasks. For us, high on the list of useful tasks are those that most animals can per-
form effortlessly, such as perception and control, as well as tasks that higher animals
and humans can do such as long-term prediction, reasoning, planning, and language
understanding. In short, our aim is to look for learning methods that bring us closer
to an artificially intelligent agent. What matters the most in this endeavor is howef-
ficientlyour model can capture and represent the required knowledge.The efficiency
is measured along three main dimensions: the amount of training data required (espe-
cially labeled data), the amount of computing resources required to reach a given level
of performance, and most importantly, the amount of human effort required to specify
the prior knowledge built into the model before training (explicitly, or implicitly) This
chapter discusses the scaling properties of various learning models, in particular kernel
machines, with respect to those three dimensions, in particular the first two. Kernel
machines arenon-parametric learning models, which make apparently weak assump-
tions on the form of the functionf() to be learned. By non-parametric methods we
mean methods which allow the complexity of the solution to increase (e.g., by hyper-
parameter selection) when more data are available. This includes classical k-nearest-
neighbor algorithms, modern kernel machines, mixture models, and multi-layer neural
networks (where the number of hidden units can be selected using the data). Our ar-
guments are centered around two limitations of kernel machines: the first limitation
applies more generally to shallow architectures, which include neural networks with a
single hidden layer. In Section 3 we consider different types of function classes, i.e.,
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architectures, including different sub-types of shallow architectures. We consider the
trade-off between the depth of the architecture and its breadth (number of elements
in each layer), thus clarifying the representational limitation of shallow architectures.
The second limitation is more specific and concerns kernel machines with alocal ker-
nel. This limitation is studied first informally in Section 3.3 by thought experiments
in the use of template matching for visual perception. Section 4 then focusses more
formally on local estimators, i.e., in which the predictionf(x) at pointx is dominated
by the near neighbors ofx taken from the training set. This includes kernel machines
in which the kernel is local, like the Gaussian kernel. Thesealgorithms rely on a prior
expressed as a distance or similarity function between pairs of examples, and encom-
pass classical statistical algorithms as well as modern kernel machines. This limitation
is pervasive, not only in classification, regression, and density estimation, but also in
manifold learning and semi-supervised learning, where many modern methods have
such locality property, and are often explicitly based on the graph of near neighbors.
Using visual pattern recognition as an example, we illustrate how the shallow nature of
kernel machines leads to fundamentally inefficient representations.

Finally, deep architectures are proposed as a way to escape from the fundamental
limitations above. Section 5 concentrates on the advantages and disadvantages of deep
architectures, which involve multiple levels of trainablemodules between input and
output. They can retain the desired flexibility in the learned functions, and increase the
efficiency of the model along all three dimensions of amount of training data, amount of
computational resources, and amount of human prior hand-coding. Although a num-
ber of learning algorithms for deep architectures have beenavailable for some time,
training such architectures is still largely perceived as adifficult challenge. We discuss
recent approaches to training such deep networks that foreshadows new breakthroughs
in this direction.

The trade-off between convexity and non-convexity has, up until recently, favored
research into learning algorithms with convex optimization problems. We have found
that non-convex optimization is sometimes more efficient that convex optimization.
Non-convex loss functions may be an unavoidable property oflearning complex func-
tions from weak prior knowledge.

2 Learning Models Towards AI

The No-Free-Lunchtheorem for learning algorithms [Wolpert, 1996] states that no
completely general-purpose learning algorithm can exist,in the sense that for every
learning model there is a data distribution on which it will fare poorly (on both training
and test, in the case of finite VC dimension). Every learning modelmustcontain im-
plicit or explicit restrictions on the class of functions that it can learn. Among the set
of all possible functions, we are particularly interested in a subset that contains all the
tasks involved in intelligent behavior. Examples of such tasks include visual percep-
tion, auditory perception, planning, control, etc. The setdoes not just include specific
visual perception tasks (e.g human face detection), but theset of all the tasks that an
intelligent agent should be able to learn. In the following,we will call this set of func-
tions the AI-set. Because we want to achieve AI, we prioritize those tasks that are in
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the AI-set.
Although we may like to think that the human brain is somewhatgeneral-purpose,

it is extremely restricted in its ability to learn high-dimensional functions. The brains
of humans and higher animals, with their learning abilities, can potentially implement
the AI-set, and constitute a working proof of the feasibility of AI. We advance that
the AI-set is a tiny subset of the set of all possible functions, but the specification of
this tiny subset may be easier than it appears. To illustratethis point, we will use the
example first proposed by [LeCun and Denker, 1992]. The connection between the
retina and the visual areas in the brain gets wired up relatively late in embryogenesis.
If one makes the apparently reasonable assumption that all possible permutations of
the millions of fibers in the optic nerve are equiprobable, there is not enough bits in
the genome to encode the correct wiring, and no lifetime longenough to learn it. The
flat prior assumption must be rejected: some wiring must be simpler to specify (or
more likely) than others. In what seems like an incredibly fortunate coincidence, a
particularly good (if not “correct”) wiring pattern happens to be one that preserves
topology. Coincidentally, this wiring pattern happens to be very simple to describe
in almost any language (for example, the biochemical language used by biology can
easily specify topology-preserving wiring patterns through concentration gradients of
nerve growth factors). How can we be so fortunate that the correct prior be so simple to
describe, yet so informative? LeCun and Denker [1992] pointout that the brain exists
in the very same physical world for which it needs to build internal models. Hence the
specification of good priors for modeling the world happen tobe simple in that world
(the dimensionality and topology of the world is common to both). Because of this, we
are allowed to hope that the AI-set, while a tiny subset of allpossible functions, may
be specified with a relatively small amount of information.

In practice, prior knowledge can be embedded in a learning model by specifying
three essential components:

1. The representation of the data: pre-processing, featureextractions, etc.

2. Thearchitectureof the machine: the family of functions that the machine can
implement and its parameterization.

3. Theloss function and regularizer: how different functions in the family are rated,
given a set of training samples, and which functions are preferred in the absence
of training samples (prior or regularizer).

Inspired by [Hinton, To appear. 2007], we classify machine learning research strate-
gies in the pursuit of AI into three categories. One isdefeatism: “Since no good pa-
rameterization of the AI-set is currently available, let’sspecify a much smaller set for
each specific task through careful hand-design of the pre-processing, the architecture,
and the regularizer”. If task-specific designs must be devised by hand for each new
task, achieving AI will require an overwhelming amount of human effort. Neverthe-
less, this constitutes the most popular approach for applying machine learning to new
problems: design a clever pre-processing (or data representation scheme), so that a
standard learning model (such as an SVM) will be able to learnthe task. A somewhat
similar approach is to specify the task-specific prior knowledge in the structure of a

5



graphical modelby explicitly representing important intermediate features and con-
cepts through latent variables whose functional dependency on observed variables is
hard-wired. Much of the research in graphical models [Jordan, 1998] (especially of
the parametric type) follows this approach. Both of these approaches, the kernel ap-
proach with human-designed kernels or features, and the graphical models approach
with human-designed dependency structure and semantics, are very attractive in the
short term because they often yield quick results in making progress on a specific task,
taking advantage of human ingenuity and implicit or explicit knowledge about the task,
and requiring small amounts of labeled data.

The second strategy isdenial: “Even with a generic kernel such as the Gaussian
kernel, kernel machines can approximate any function, and regularization (with the
bounds) guarantee generalization. Why would we need anything else?” This belief
contradicts the no free lunch theorem. Although kernel machines can represent any
labeling of a particular training set, they canefficiently representa very small and
very specific subset of functions, which the following sections of this chapter will at-
tempt to characterize. Whether this small subset covers a large part of the AI-set is
very dubious, as we will show. In general, what we think of as generic learning algo-
rithms can only work well with certain types of data representations and not so well
with others. They can in fact represent certain types of functions efficiently, and not
others. While the clever preprocessing/generic learning algorithm approach may be
useful for solving specific problems, it brings about littleprogress on the road to AI.
How can we hope to solve the wide variety of tasks required to achieve AI with this
labor-intensive approach? More importantly, how can we ever hope to integrate each
of these separately-built, separately-trained, specialized modules into a coherent ar-
tificially intelligent system? Even if we could build those modules, we would need
another learning paradigm to be able to integrate them into acoherent system.

The third strategy isoptimism: “let’s look for learning models that can be applied to
the largest possible subset of the AI-set, while requiring the smallest possible amount
of additional hand-specified knowledge for each specific task within the AI-set”. The
question becomes: is there a parameterization of the AI-setthat can be efficiently im-
plemented with computer technology?

Consider for example the problem of object recognition in computer vision: we
could be interested in building recognizers for at least several thousand categories of
objects. Should we have specialized algorithms for each? Similarly, in natural language
processing, the focus of much current research is on devising appropriate features for
specific tasks such as recognizing or parsing text of a particular type (such as spam
email, job ads, financial news, etc). Are we going to have to dothis labor-intensive
work for all the possible types of text? our system will not bevery smart if we have
to manually engineer new patches each time new a type of text or new types of object
category must be processed. If there exist more general-purpose learning models, at
least general enough to handle most of the tasks that animalsand humans can handle,
then searching for them may save us a considerable amount of labor in the long run.

As discussed in the next section, a mathematically convenient way to characterize
the kind of complex task needed for AI is that they involve learning highly non-linear
functions with many variations (i.e., whose derivative changes direction often). This
is problematic in conjunction with a prior that smooth functions are more likely, i.e.,
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having few or small variations. We meanf to be smooth when the value off(x) and
of its derivativef ′(x) are close to the values off(x + ∆) andf ′(x + ∆) respectively
whenx andx+∆ are close as defined by a kernel or a distance. This chapter advances
several arguments that the smoothness prior alone is insufficient to learn highly-varying
functions. This is intimately related to the curse of dimensionality, but as we find
throughout our investigation, it is not the number of dimensions so much as the amount
of variation that matters. A one-dimensional function could be difficult to learn, and
many high-dimensional functions can be approximated well enough with a smooth
function, so that non-parametric methods relying only on the smooth prior can still
give good results.

We callstrong priorsa type of prior knowledge that gives high probability (or low
complexity) to a very small set of functions (generally related to a small set of tasks),
andbroad priorsa type of prior knowledge that give moderately high probability to
a wider set of relevant functions (which may cover a large subset of tasks within the
AI-set). Strong priors are task-specific, while broad priors are more related to the
general structure of our world. We could prematurely conjecture that if a function
has many local variations (hence is not very smooth), then itis not learnable unless
strong prior knowledge is at hand. Fortunately, this is not true. First, there is no
reason to believe that smoothness priors should have a special status over other types
of priors. Using smoothness priors when we know that the functions we want to learn
are non-smooth would seem counter-productive. Other broadpriors are possible. A
simple way to define a prior is to define a language (e.g., a programming language)
with which we express functions, and favor functions that have a low Kolmogorov
complexity in that language, i.e. functions whose program is short. Consider using the
C programming language (along with standard libraries thatcome with it) to define our
prior, and learning functions such asg(x) = sin(x) (with x a real value) org(x) =
parity(x) (with x a binary vector of fixed dimension). These would be relatively easy
to learn with a small number of samples because their description is extremely short in
C and they are very probable under the corresponding prior, despite the fact that they
are highly non-smooth. We do not advocate the explicit use ofKolmogorov complexity
in a conventional programming language to design new learning algorithms, but we use
this example to illustrate that it is possible to learn apparently complex functions (in
the sense they vary a lot) using broad priors, by using a non-local learning algorithm,
corresponding to priors other than the smoothness prior. This thought example and the
study of toy problems like the parity problem in the rest of the chapter also shows that
the main challenge is to design learning algorithms that candiscover representations of
the data that compactly describe regularities in it. This is in contrast with the approach
of enumerating the variations present in the training data,and hoping to rely on local
smoothness to correctly fill in the space between the training samples.

As we mentioned earlier, there may exist broad priors, with seemingly simple de-
scription, that greatly reduce the space of accessible functions in appropriate ways. In
visual systems, an example of such a broad prior, which is inspired by Nature’s bias
towards retinotopic mappings, is the kind of connectivity used in convolutional net-
works for visual pattern recognition [LeCun et al., 1989, LeCun et al., 1998]. This
will be examined in detail in section 6. Another example of broad prior, which we
discuss in section 5, is that the functions to be learned should be expressible as multi-
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ple levels of composition of simpler functions, wheredifferent levels of functions can
be viewed as different levels of abstraction. The notion of “concept” and of “abstrac-
tion” that we talk about is rather broad and simply means a random quantity strongly
dependent of the observed data, and useful in building a representation of its distri-
bution that generalises well. Functions at lower levels of abstraction should be found
useful for capturing some simpler aspects of the data distribution, so that it is possi-
ble to first learn the simpler functions and then compose themto learn more abstract
concepts. Animals and humans do learn in this way, with simpler concepts earlier in
life, and higher-level abstractions later, expressed in terms of the previously learned
concepts. Not all functions can be decomposed in this way, but humans appear to have
such a constraint. If such a hierarchy did not exist, humans would be able to learn
new concepts in any order. Hence we can hope that this type of prior may be useful to
help cover the AI-set, but yet specific enough to exclude the vast majority of useless
functions.

It is a thesis of the present work that learning algorithms that build such deeply
layered architectures offer a promising avenue for scalingmachine learning towards
AI. Another related thesis is that one should not consider the large variety of tasks
separately, but as different aspects of a more general problem: that of learning the
basic structure of the world, as seen say through the eyes andears of a growing animal
or a young child. This is an instance of multi-task learning where it is clear that the
different tasks share a strong commonality. This allows us to hope that after training
such a system on a large variety of tasks in the AI-set, the system may generalize to
a new task from only a few labeled examples. We hypothesize that many tasks in the
AI-set may be built around commonrepresentations, which can be understood as a set
of interrelated concepts.

If our goal is to build a learning machine for the AI-set, our research should con-
centrate on devising learning models with the following features:

• A highly flexible way to specify prior knowledge, hence a learning algorithm
that can function with a large repertoire of architectures.

• A learning algorithm that can deal with deep architectures,in which a decision
involves the manipulation of many intermediate concepts, and multiple levels of
non-linear steps.

• A learning algorithm that can handle large families of functions, parameterized
with millions of individual parameters.

• A learning algorithm that can be trained efficiently even, when the number of
training examples becomes very large. This excludes learning algorithms requir-
ing to store and iterate multiple times over the whole training set, or for which
the amount of computations per example increases as more examples are seen.
This strongly suggest the use of on-line learning.

• A learning algorithm that can discover concepts that can be shared easily among
multiple tasks and multiple modalities (multi-task learning), and that can take
advantage of large amounts of unlabeled data (semi-supervised learning).
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3 Learning Architectures, Shallow and Deep

3.1 Architecture Types

In this section, we define the notions of shallow and deep architectures. An informal
discussion of their relative advantages and disadvantage is presented using examples.
A more formal discussion of the limitations of shallow architectures with local smooth-
ness (which includes most modern kernel methods) is given inthe next section.

Following the tradition of the classic bookPerceptrons[Minsky and Papert, 1969],
it is instructive to categorize different types of learningarchitectures and to analyze
their limitations and advantages. To fix ideas, consider thesimple case of classification
in which a discrete label is produced by the learning machiney = f(x, w), wherex is
the input pattern, andw a parameter which indexes the family of functionsF that can
be implemented by the architectureF = {f(·, w), w ∈ W}.

Figure 1: Different types of shallow architectures. (a) Type-1: fixed preprocessing and
linear predictor; (b) Type-2: template matchers and linearpredictor (kernel machine);
(c) Type-3: simple trainable basis functions and linear predictor (neural net with one
hidden layer, RBF network).

Traditional Perceptrons, like many currently popular learning models, areshal-
low architectures. Different types of shallow architectures are representedin figure 1.
Type-1 architectures have fixed preprocessing in the first layer (e.g., Perceptrons).
Type-2 architectures have template matchers in the first layer (e.g., kernel machines).
Type-3 architectures have simple trainable basis functions in the first layer (e.g., neural
net with one hidden layer, RBF network). All three have a linear transformation in the
second layer.

3.1.1 Shallow Architecture Type 1

Fixed pre-processing plus linear predictor, figure 1(a): The simplest shallow archi-
tecture is composed of a fixed preprocessing layer (sometimes called features or ba-
sis functions), followed by a linear predictor. The type of linear predictor used, and
the way it is trained is unspecified (maximum-margin, logistic regression, Perceptron,
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squared error regression....). The familyF is linearly parameterized in the parameter
vector: f(x) =

∑k
i=1 wiφi(x). This type of architecture is widely used in practi-

cal applications. Since the pre-processing is fixed (and hand-crafted), it is necessarily
task-specific in practice. It is possible to imagine a shallow type-1 machine that would
parameterize the complete AI-set. For example, we could imagine a machine in which
each feature is a member of the AI-set, hence each particularmember of the AI-set
can be represented with a weight vector containing all zeros, except for a single 1 at
the right place. While there probably exist more compact ways to linearly parame-
terize the entire AI-set, the number of necessary features would surely be prohibitive.
More importantly, we do not know explicitly the functions ofthe AI-set, so this is not
practical.

3.1.2 Shallow Architecture Type 2

Template matchers plus linear predictor, figure 1(b): Next on the scale of adaptability
is the traditional kernel machine architecture. The preprocessing is a vector of values
resulting from the application of a kernel functionK(x, xi) to each training sample
f(x) = b +

∑n
i=1 αiK(x, xi), wheren is the number of training samples, the pa-

rameterw contains all theαi and the biasb. In effect, the first layer can be seen as
a series of template matchers in which the templates are the training samples. Type-2
architectures can be seen as special forms of Type-1 architectures in which the features
are data-dependent, which is to sayφi(x) = K(x, xi). This is a simple form of unsu-
pervised learning, for the first layer. Through the famouskernel trick(see [Schölkopf
et al., 1999]), Type-2 architectures can be seen as a compactway of representing Type-
1 architectures, including some that may be too large to be practical. If the kernel
function satisfies the Mercer condition it can be expressed as an inner product between
feature vectorsKφ(x, xi) =< φ(x), φ(xi) >, giving us a linear relation between the
parameter vectors in both formulations:w for Type-1 architectures is

∑

i αiφ(xi). A
very attractive feature of such architectures is that for several common loss functions
(e.g., squared error, margin loss) training them involves aconvex optimization program.
While these properties are largely perceived as the magic behind kernel methods, they
should not distract us from the fact that the first layer of a kernel machine is often
just a series of template matchers. In most kernel machines,the kernel is used as a
kind of template matchers, but other choices are possible. Using task-specific prior
knowledge, one can design a kernel that incorporates the right abstractions for the task.
This comes at the cost of lower efficiency in terms of human labor. When a kernel
acts like a template matcher, we call itlocal: K(x, xi) discriminates between values
of x that are nearxi and those that are not. Some of the mathematical results in this
chapter focus on the Gaussian kernel, where nearness corresponds to small Euclidean
distance. One could say that one of the main issues with kernel machine with local
kernels is that they arelittle more than template matchers. It is possible to use kernels
that are non-local yet not task-specific, such as the linear kernels and polynomial ker-
nels. However, most practitioners have been prefering linear kernels or local kernels.
Linear kernels are type-1 shallow architectures, with their obvious limitations. Local
kernels have been popular because they make intuitive sense(it is easier to insert prior
knowledge), while polynomial kernels tend to generalize very poorly when extrapo-
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lating (e.g., grossly overshooting). The smoothness priorimplicit in local kernels is
quite reasonable for a lot of the applications that have beenconsidered, whereas the
prior implied by polynomial kernels is less clear. Learningthe kernel would move us
to Type-3 shallow architectures or deep architectures described below.

3.1.3 Shallow Architecture Type 3

Simple trainable basis functions plus linear predictor, figure 1(c): In Type-3 shallow
architectures, the first layer consists of simple basis functions that aretrainable through
supervised learning. This can improve the efficiency of the function representation, by
tuning the basis functions to a task. Simple trainable basisfunctions include linear
combinations followed by point-wise non-linearities and Gaussian radial-basis func-
tions (RBF). Traditional neural networks with one hidden layer, and RBF networks
belong to that category. Kernel machines in which the kernelfunction is learned (and
simple) also belong to the shallow Type-3 category. Many boosting algorithms belong
to this class as well. Unlike with Types 1 and 2, the output is anon-linear function
of the parameters to be learned. Hence the loss functions minimized by learning are
likely to be non-convex in the parameters. The definition of Type-3 architectures is
somewhat fuzzy, since it relies on the ill-defined concept of“simple” parameterized
basis function.

We should immediately emphasize that the boundary between the various cate-
gories is somewhat fuzzy. For example, training the hidden layer of a one-hidden-layer
neural net (a type-3 shallow architecture) is a non-convex problem, but one could imag-
ine constructing a hidden layer so large that all possible hidden unit functions would
be present from the start. Only the output layer would need tobe trained. More specif-
ically, when the number of hidden units becomes very large, and an L2 regularizer is
used on the output weights, such a neural net becomes a kernelmachine, whose kernel
has a simple form that can be computed analytically [Bengio et al., 2006b]. If we use
the margin loss this becomes an SVM with a particular kernel.Although convexity
is only achieved in the mathematical limit of an infinite number of hidden units, we
conjecture that optimization of single-hidden-layer neural networks becomes easier as
the number of hidden units becomes larger. If single-hidden-layer neural nets have any
advantage over SVMs, it is that they can, in principle, achieve similar performance
with a smaller first layer (since the parameters of the first layer can be optimized for
the task).

Note also that our mathematical results on local kernel machines are limited in
scope, and most are derived for specific kernels such as the Gaussian kernel, or for
local kernels (in the sense ofK(u, v) being near zero when||u − v|| becomes large).
However, the arguments presented below concerning the shallowness of kernel ma-
chines are more general.

3.1.4 Deep Architectures

Deep architectures arecompositions of many layers of adaptive non-linear components,
in other words, they are cascades of parameterized non-linear modules that contain
trainable parameters at all levels. Deep architectures allow the representation of wide
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families of functions in a more compact form than shallow architectures, because they
can trade space for time (or breadth for depth) while making the time-space product
smaller, as discussed below. The outputs of the intermediate layers are akin to interme-
diate results on the way to computing the final output. Features produced by the lower
layers represent lower-level abstractions, that are combined to form high-level features
at the next layer, representing higher-level abstractions.

3.2 The Depth-Breadth Tradeoff

Any specific function can be implemented by a suitably designed shallow architec-
ture or by a deep architecture. Similarly, when parameterizing a family of functions,
we have the choice between shallow or deep architectures. The important questions
are: 1. how large is the corresponding architecture (with how many parameters, how
much computation to produce the output); 2. how much manual labor is involved in
specializing the architecture to the task.

Using a number of examples, we shall demonstrate that deep architectures are often
more efficient (in terms of number of computational components and parameters) for
representing common functions. Formal analyses of the computational complexity of
shallow circuits can be found in Hastad [1987] or Allender [1996]. They point in the
same direction: shallow circuits are much less expressive than deep ones.

Let us first consider the task of adding twoN -bit binary numbers. The most natural
circuit involves adding the bits pair by pair and propagating the carry. The carry prop-
agation takesO(N) steps, and alsoO(N) hardware resources. Hence the most natural
architecture for binary addition is a deep one, withO(N) layers andO(N) elements.
A shallow architecture can implement any boolean formula expressed in disjunctive
normal form (DNF), by computing the minterms (AND functions) in the first layer,
and the subsequent OR function using a linear classifier (a threshold gate) with a low
threshold. Unfortunately, even for simple boolean operations such as binary addition
and multiplication, the number of terms can be extremely large (up toO(2N ) for N -bit
inputs in the worst case). The computer industry has in fact devoted a considerable
amount of effort to optimize the implementation of exponential boolean functions, but
the largest it can put on a single chip has only about 32 input bits (a 4-Gbit RAM
chip, as of 2006). This is why practical digital circuits, e.g., for adding or multiplying
two numbers are built with multiple layers of logic gates: their 2-layer implementation
(akin to a lookup table) would be prohibitively expensive. See [Utgoff and Stracuzzi,
2002] for a previous discussion of this question in the context of learning architectures.

Another interesting example is the boolean parity function. The N -bit boolean
parity function can be implemented in at least five ways:

(1) with N daisy-chained XOR gates (anN -layer architecture or a recurrent circuit
with one XOR gate andN time steps);

(2) with N −1 XOR gates arranged in a tree (alog2 N layer architecture), for a total
of O(N log N) components;

(3) a DNF formula withO(2N ) minterms (two layers).
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Architecture 1 has high depth and low breadth (small amount of computing elements),
architecture 2 is a good tradeoff between depth and breadth,and architecture 3 has
high breadth and low depth. If one allows the use of multi-input binary threshold
gates (linear classifiers) in addition to traditional logicgates, two more architectures
are possible [Minsky and Papert, 1969]:

(4) a 3-layer architecture constructed as follows. The firstlayer hasN binary thresh-
old gates (linear classifiers) in which uniti adds the input bits and subtractsi,
hence computing the predicatexi = (SUM OF BITS ≥ i). The second layer
contains(N − 1)/2 AND gates that compute(xiAND(NOTXi+1)) for all i
that are odd. The last layer is a simple OR gate.

(5) a 2-layer architecture in which the first layer is identical to that of the 3-layer ar-
chitecture above, and the second layer is a linear thresholdgate (linear classifier)
where the weight for inputxi is equal to(−2)i.

The fourth architecture requires a dynamic range (accuracy) on the weight linear in
N , while the last one requires a dynamic range exponential inN . A proof thatN -
bit parity requiresO(2N ) gates to be represented by a depth-2 boolean circuit (with
AND, NOT and OR gates) can be found in Ajtai [1983]. In theorem4 (section 4.1.1)
we state a similar result for learning architectures: an exponential number of terms is
required with a Gaussian kernel machine in order to represent the parity function. In
many instances, space (or breadth) can be traded for time (ordepth) with considerable
advantage.

These negative results may seem reminiscent of the classic results in Minsky and
Papert’s book Perceptrons [Minsky and Papert, 1969]. This should come as no surprise:
shallow architectures (particularly of type 1 and 2) fall into Minsky and Papert’s general
definition of a Perceptron and are subject to many of its limitations.

Another interesting example in which adding layers is beneficial is the fast Fourier
transform algorithm (FFT). Since the discrete Fourier transform is a linear operation, it
can be performed by a matrix multiplication withN2 complex multiplications, which
can all be performed in parallel, followed byO(N2) additions to collect the sums.
However the FFT algorithm can reduce the total cost to1

2N log2 N , multiplications,
with the tradeoff of requiringlog2 N sequential steps involvingN2 multiplications each.
This example shows that, even with linear functions, addinglayers allows us to take
advantage of the intrinsic regularities in the task.

Because each variable can be either absent, present, or negated in a minterm, there
areM = 3N different possible minterms when the circuit hasN inputs. The set of
all possible DNF formulae withk minterms andN inputs hasC(M, k) elements (the
number of combinations ofk elements fromM ). Clearly that set (which is associated
with the set of functions representable withk minterms) grows very fast withk. Going
fromk−1 to k minterms increases the number of combinations by a factor(M −k)/k.
Whenk is not close toM , the size of the set of DNF formulae is exponential in the
number of inputsN . These arguments would suggest that only an exponentially (in
N ) small fraction of all boolean functions require a less thanexponential number of
minterms.
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We claim that most functions that can be represented compactly by deep architec-
tures cannot be represented by a compact shallow architecture. Imagine representing
the logical operations overK layers of a logical circuit into a DNF formula. The op-
erations performed by the gates on each of the layers are likely to get combined into
a number of minterms that could be exponential in the original number of layers. To
see this, consider aK layer logical circuit where every odd layer has AND gates (with
the option of negating arguments) and every even layer has ORgates. Every AND-OR
consecutive layers corresponds to a sum of products in modulo-2 arithmetic. The whole
circuit is the composition ofK/2 such sums of products, and it is thus a deepfactoriza-
tion of a formula. In general, when a factored representation is expanded into a single
sum of products, one gets a number of terms that can be exponential in the number
of levels. A similar phenomenon explains why most compact DNF formulae require
an exponential number of terms when written as a Conjuctive Normal Form (CNF)
formula. A survey of more general results in computational complexity of boolean cir-
cuits can be found in Allender [1996]. For example, Hastad [1987] show that for all
k, there are depthk + 1 circuits of linear size that require exponential size to simulate
with depthk circuits. This implies thatmost functions representable compactly with
a deep architecture would require a very large number of components if represented
with a shallow one. Hence restricting ourselves to shallow architectures unduly limits
the spectrum of functions that can be represented compactlyand learned efficiently (at
least in a statistical sense). In particular, highly-variable functions (in the sense of hav-
ing high frequencies in their Fourier spectrum) are difficult to represent with a circuit
of depth 2 [Linial et al., 1993]. The results that we present in section 4 yield a similar
conclusion: representing highly-variable functions witha Gaussian kernel machine is
very inefficient.

3.3 The Limits of Matching Global Templates

Before diving into the formal analysis of local models, we compare the kernel machines
(Type-2 architectures) with deep architectures using examples. One of the fundamental
problems in pattern recognition is how to handle intra-class variability. Taking the ex-
ample of letter recognition, we can picture the set of all thepossible images of the letter
’E’ on a 20 × 20 pixel grid as a set of continuous manifolds in the pixel space(e.g., a
manifold for lower case and one for cursive). The E’s on a manifold can be continu-
ously morphed into each other by following a path on the manifold. The dimensionality
of the manifold at one location corresponds to the number of independent distortions
that can can be applied to an image while preserving its category. For handwritten let-
ter categories, the manifold has a high dimension: letters can be distorted using affine
transforms (6 parameters), distorted using an elastic sheet deformation (high dimen-
sion), or modified so as to cover the range of possible writingstyles, shapes, and stroke
widths. Even for simple character images, the manifold is very non-linear, with high
curvature. To convince ourselves of that, consider the shape of the letter ’W’. Any pixel
in the lower half of the image will go from white to black and white again four times as
the W is shifted horizontally within the image frame from left to right. This is the sign
of a highly non-linear surface. Moreover, manifolds for other character categories are
closely intertwined. Consider the shape of a capital U and anO at the same location.
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They have many pixels in common, many more pixels in fact thanwith a shifted ver-
sion of the same U. Hence the distance between the U and O manifolds is smaller than
the distance between two U’s shifted by a few pixels. Anotherinsight about the high
curvature of these manifolds can be obtained from the example in figure 4: the tangent
vector of the horizontal translation manifold changes abruptly as we translate the im-
age only one pixel to the right, indicating high curvature. As discussed in section 4.2,
many kernel algorithms make an implicit assumption of a locally smooth function (e.g.,
locally linear in the case of SVMs)around each training examplexi. Hence a high cur-
vature implies the necessity of a large number of training examples in order to cover
all the desired twists and turns with locally constant or locally linear pieces.

This brings us to what we perceive as the main shortcoming of template-based
methods: a very large number of templates may be required in order to cover each
manifold with enough templates to avoid misclassifications. Furthermore, the number
of necessary templates can grow exponentially with the intrinsic dimension of a class-
invariant manifold. The only way to circumvent the problem with a Type-2 architec-
ture is to design similarity measures for matching templates (kernel functions) such
that two patterns that are on the same manifold are deemed similar. Unfortunately,
devising such similarity measures, even for a problem as basic as digit recognition,
has proved difficult, despite almost 50 years of active research. Furthermore, if such a
good task-specific kernel were finally designed, it may be inapplicable to other classes
of problems.

To further illustrate the situation, consider the problem of detecting and identifying
a simple motif (say, of sizeS = 5×5 pixels) that can appear atD different locations in a
uniformly white image withN pixels (say106 pixels). To solve this problem, a simple
kernel-machine architecture would require one template ofthe motif for each possi-
ble location. This requiresN.D elementary operations. An architecture that allows
for spatially localfeature detectors would merely requireS.D elementary operations.
We should emphasize that this spatial locality (feature detectors that depend on pixels
within a limited radius in the image plane) is distinct from the locality of kernel func-
tions (feature detectors that produce large values only forinput vectors that are within
a limited radius in the input vector space). In fact, spatially local feature detectors have
non-local response in the space of input vectors, since their output is independent of
the input pixels they are not connected to.

A slightly more complicated example is the task of detectingand recognizing a
pattern composed of two different motifs. Each motif occupiesS pixels, and can appear
at D different locations independently of each other. A kernel machine would need a
separate template for each possible occurrence of the two motifs, i.e.,N.D2 computing
elements. By contrast, a properly designed Type-3 architecture would merely require a
set of local feature detectors for all the positions of the first motifs, and a similar set for
the second motif. The total amount of elementary operationsis a mere2.S.D. We do
not know of any kernel that would allow to efficiently handle compositional structures.

An even more dire situation occurs if the background is not uniformly white, but
can contain random clutter. A kernel machine would probablyneed many different
templates containing the desired motifs on top of many different backgrounds. By con-
trast, the locally-connected deep architecture describedin the previous paragraph will
handle this situation just fine. We have verified this type of behavior experimentally
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(see examples in section 6).
These thought experiments illustrate the limitations of kernel machines due to the

fact that their first layer is restricted to matching the incoming patterns with global tem-
plates. By contrast, the Type-3 architecture that uses spatially local feature detectors
handles the position jitter and the clutter easily and efficiently. Both architectures are
shallow, but while each kernel function is activated in a small area of the input space,
the spatially local feature detectors are activated by a huge (N − S)-dimensional sub-
space of the input space (since they only look atS pixels). Deep architectures with
spatially-local feature detectors are even more efficient (see Section 6). Hence the lim-
itations of kernel machines are not just due to their shallowness, but also to thelocal
character of their response function (local in input space,not in the space of image
coordinates).

4 Fundamental Limitation of Local Learning

A large fraction of the recent work in statistical machine learning has focused on
non-parametric learning algorithms which rely solely, explicitly or implicitly, on a
smoothness prior. A smoothness prior favors functionsf such that whenx ≈ x′,
f(x) ≈ f(x′). Additional prior knowledge is expressed by choosing the space of the
data and the particular notion of similarity between examples (typically expressed as
a kernel function). This class of learning algorithms includes most instances of the
kernel machine algorithms [Schölkopf et al., 1999], such as Support Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995] or Gaussian processes [Williams
and Rasmussen, 1996], but also unsupervised learning algorithms that attempt to cap-
ture the manifold structure of the data, such as Locally Linear Embedding [Roweis and
Saul, 2000], Isomap [Tenenbaum et al., 2000], kernel PCA [Schölkopf et al., 1998],
Laplacian Eigenmaps [Belkin and Niyogi, 2003], Manifold Charting [Brand, 2003],
and spectral clusteringalgorithms (see Weiss [1999] for a review). More recently,
there has also been much interest in non-parametricsemi-supervised learning algo-
rithms, such as Zhu et al. [2003], Zhou et al. [2004], Belkin et al. [2004], Delalleau
et al. [2005], which also fall in this category, and share many ideas with manifold
learning algorithms.

Since this is a large class of algorithms and one that continues to attract attention,
it is worthwhile to investigate its limitations. Since these methods share many char-
acteristics with classical non-parametric statistical learning algorithms – such as the
k-nearest neighbors and the Parzen windows regression and density estimation algo-
rithms [Duda and Hart, 1973] – which have been shown to sufferfrom the so-called
curse of dimensionality, it is logical to investigate the following question: to what ex-
tent do these modern kernel methods suffer from a similar problem? See [Härdle et al.,
2004] for a recent and easily accessible exposition of the curse of dimensionality for
classical non-parametric methods.

To explore this question, we focus on algorithms in which thelearned function is
expressed in terms of a linear combination of kernel functions applied on the training
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examples:

f(x) = b +
n
∑

i=1

αiKD(x, xi) (1)

where we have included an optional bias termb. The setD = {z1, . . . , zn} contains
training exampleszi = xi for unsupervised learning,zi = (xi, yi) for supervised
learning. Target valueyi can take a special missing value for semi-supervised learning.
Theαi’s are scalars chosen by the learning algorithm usingD, andKD(·, ·) is the ker-
nel function, a symmetric function (sometimes expected to be positive semi-definite),
which may be chosen by taking into account all thexi’s. A typical kernel function is
the Gaussian kernel,

Kσ(u, v) = e−
1

σ2 ||u−v||2, (2)

with the widthσ controlling how local the kernel is. See Bengio et al. [2004]to see that
LLE, Isomap, Laplacian eigenmaps and other spectral manifold learning algorithms
such as spectral clustering can be generalized and written in the form of eq. 1 for a test
pointx, but with a different kernel (that is data-dependent, generally performing a kind
of normalization of a data-independent kernel).

One obtains the consistency of classical non-parametric estimators by appropriately
varying the hyper-parameter that controls the locality of the estimator asn increases.
Basically, the kernel should be allowed to become more and more local, so that statis-
tical bias goes to zero, but the effective number of examplesinvolved in the estimator
at x (equal tok for thek-nearest neighbor estimator) should increase asn increases,
so that statistical variance is also driven to 0. For a wide class of kernel regression
estimators, the unconditional variance and squared bias can be shown to be written as
follows [Härdle et al., 2004]:

expected error =
C1

nσd
+ C2σ

4,

with C1 andC2 not depending onn nor on the dimensiond. Hence an optimal band-

width is chosen proportional ton
−1

4+d , and the resulting generalization error (not count-
ing the noise) converges inn−4/(4+d), which becomes very slow for larged. Consider
for example the increase in number of examples required to get the same level of error,
in 1 dimension versusd dimensions. Ifn1 is the number of examples required to get a
particular level of error, to get the same level of error ind dimensions requires on the
order ofn(4+d)/5

1 examples, i.e., therequired number of examples is exponential ind.
For thek-nearest neighbor classifier, a similar result is obtained [Snapp and Venkatesh,
1998]:

expected error = E∞ +

∞
∑

j=2

cjn
−j/d

whereE∞ is the asymptotic error,d is the dimension andn the number of examples.
Note however that, if the data distribution is concentratedon a lower dimensional

manifold, it is themanifold dimensionthat matters. For example, when data lies on
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a smooth lower-dimensional manifold, the only dimensionality that matters to ak-
nearest neighbor classifier is the dimensionality of the manifold, since it only uses
the Euclidean distances between the near neighbors. Many unsupervised and semi-
supervised learning algorithms rely on a graph with one nodeper example, in which
nearby examples are connected with an edge weighted by the Euclidean distance be-
tween them. If data lie on a low-dimensional manifold then geodesic distances in this
graph approach geodesic distances on the manifold [Tenenbaum et al., 2000], as the
number of examples increases. However, convergence can be exponentially slower for
higher-dimensional manifolds.

4.1 Minimum Number of Bases Required

In this section we present results showing the number of required bases (hence of train-
ing examples) of a kernel machine with Gaussian kernel may grow linearly with the
number of variations of the target function that must be captured in order to achieve a
given error level.

4.1.1 Result for Supervised Learning

The following theorem highlights the number of sign changesthat a Gaussian kernel
machine can achieve, when it hask bases (i.e.,k support vectors, or at leastk training
examples).

Theorem 1(Theorem 2 of Schmitt [2002]). Let f : R → R computed by a Gaussian
kernel machine (eq. 1) withk bases (non-zeroαi’s). Thenf has at most2k zeros.

We would like to say something about kernel machines inR
d, and we can do this

simply by considering a straight line inRd and the number of sign changes that the
solution functionf can achieve along that line.

Corollary 2. Suppose that the learning problem is such that in order to achieve a given
error level for samples from a distributionP with a Gaussian kernel machine (eq. 1),
thenf must change sign at least2k times along some straight line (i.e., in the case of a
classifier, the decision surface must be crossed at least2k times by that straight line).
Then the kernel machine must have at leastk bases (non-zeroαi’s).

A proof can be found in Bengio et al. [2006a].

Example 3. Consider the decision surface shown in figure 2, which is a sinusoidal
function. One may take advantage of the global regularity tolearn it with few pa-
rameters (thus requiring few examples), but with an affine combination of Gaussians,
corollary 2 implies one would need at least⌈m

2 ⌉ = 10 Gaussians. For more complex
tasks in higher dimension, the complexity of the decision surface could quickly make
learning impractical when using such a local kernel method.

Of course, one only seeks to approximate the decision surface S, and does not
necessarily need to learn it perfectly: corollary 2 says nothing about the existence of
an easier-to-learn decision surface approximatingS. For instance, in the example of

18



decision surface

Class −1

Class 1

Figure 2: The dotted line crosses the decision surface 19 times: one thus needs at least
10 Gaussians to learn it with an affine combination of Gaussians with same width.

figure 2, the dotted line could turn out to be a good enough estimated decision surface
if most samples were far from the true decision surface, and this line can be obtained
with only two Gaussians.

The above theorem tells us that in order to represent a function that locally varies a
lot, in the sense that its sign along a straight line changes many times, a Gaussian kernel
machine requires many training examples and many computational elements. Note that
it says nothing about the dimensionality of the input space,but we might expect to have
to learn functions that vary more when the data is high-dimensional. The next theorem
confirms this suspicion in the special case of thed-bits parity function:

parity : (b1, . . . , bd) ∈ {0, 1}d 7→

{

1 if
∑d

i=1 bi is even
−1 otherwise.

Learning this apparently simple function with Gaussians centered on points in{0, 1}d

is actually difficult, in the sense that it requires a number of Gaussians exponential
in d (for a fixed Gaussian width). Note that our corollary 2 does not apply to thed-
bits parity function, so it represents another type of localvariation (not along a line).
However, it is also possible to prove a very strong result forparity.

Theorem 4. Letf(x) = b+
∑2d

i=1 αiKσ(xi, x) be an affine combination of Gaussians
with same widthσ centered on pointsxi ∈ Xd. If f solves the parity problem, then
there are at least2d−1 non-zero coefficientsαi.

A proof can be found in Bengio et al. [2006a].
The bound in theorem 4 is tight, since it is possible to solve the parity problem with

exactly2d−1 Gaussians and a bias, for instance by using a negative bias and putting a
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positive weight on each example satisfyingparity(xi) = 1. When trained to learn the
parity function, a SVM may learn a function that looks like the opposite of the parity
on test points (while still performing optimally on training points), but it is an artifact
of the specific geometry of the problem, and only occurs when the training set size is
appropriate compared to|Xd| = 2d (see Bengio et al. [2005] for details). Note that if
the centers of the Gaussians are not restricted anymore to bepoints in the training set
(i.e., a Type-3 shallow architecture), it is possible to solve the parity problem with only
d + 1 Gaussians and no bias [Bengio et al., 2005].

One may argue that parity is a simple discrete toy problem of little interest. But
even if we have to restrict the analysis to discrete samples in {0, 1}d for mathematical
reasons, the parity function can be extended to a smooth function on the[0, 1]d hyper-
cube depending only on the continuous sumb1 + . . . + bd. Theorem 4 is thus a basis
to argue that the number of Gaussians needed to learn a function with many variations
in a continuous space may scale linearly with the number of these variations, and thus
possibly exponentially in the dimension.

4.1.2 Results for Semi-Supervised Learning

In this section we focus on algorithms of the type described in recent papers [Zhu et al.,
2003, Zhou et al., 2004, Belkin et al., 2004, Delalleau et al., 2005], which are graph-
based, non-parametric, semi-supervised learning algorithms. Note that transductive
SVMs [Joachims, 1999], which are another class of semi-supervised algorithms, are
already subject to the limitations of corollary 2. The graph-based algorithms we con-
sider here can be seen as minimizing the following cost function, as shown in Delalleau
et al. [2005]:

C(Ŷ ) = ‖Ŷl − Yl‖
2 + µŶ ⊤LŶ + µǫ‖Ŷ ‖2 (3)

with Ŷ = (ŷ1, . . . , ŷn) the estimated labels on both labeled and unlabeled data, and
L the (un-normalized) graph Laplacian matrix, derived throughL = D−1/2WD−1/2

from a kernel functionK between points such that the Gram matrixW , with Wij =
K(xi, xj), corresponds to the weights of the edges in the graph, andD is a diagonal
matrix containing in-degree:Dii =

∑

j Wij . Here,Ŷl = (ŷ1, . . . , ŷl) is the vector
of estimated labels on thel labeled examples, whose known labels are given byYl =
(y1, . . . , yl), and one may constrain̂Yl = Yl as in Zhu et al. [2003] by lettingµ → 0.
We define a region with constant label as a connected subset ofthe graph where all
nodesxi have the same estimated label (sign ofŷi), and such that no other node can be
added while keeping these properties.

Minimization of the cost criterion of eq. 3 can also be seen asa label propagation
algorithm, i.e., labels are spread around labeled examples, with nearness being defined
by the structure of the graph, i.e., by the kernel. An intuitive view of label propagation
suggests that a region of the manifold near a labeled (e.g., positive) example will be
entirely labeled positively, as the example spreads its influence by propagation on the
graph representing the underlying manifold. Thus, the number of regions with constant
label should be on the same order as (or less than) the number of labeled examples.
This is easy to see in the case of a sparse Gram matrixW . We define a region with
constant label as a connected subset of the graph where all nodesxi have the same
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estimated label (sign of̂yi), and such that no other node can be added while keeping
these properties. The following proposition then holds (note that it is also true, but
trivial, whenW defines a fully connected graph).

Proposition 5. After running a label propagation algorithm minimizing thecost of
eq. 3, the number of regions with constant estimated label isless than (or equal to) the
number of labeled examples.

A proof can be found in Bengio et al. [2006a]. The consequenceis that we will need
at least as many labeled examples as there are variations in the class, as one moves by
small steps in the neighborhood graph from one contiguous region of same label to an-
other. Again we see the same type of non-parametric learningalgorithms with a local
kernel, here in the case of semi-supervised learning: we mayneed about as many la-
beled examples as there are variations, even though an arbitrarily large number of these
variations could have been characterized more efficiently than by their enumeration.

4.2 Smoothness versus Locality: Curse of Dimensionality

Consider a Gaussian SVM and how that estimator changes as onevariesσ, the hyper-
parameter of the Gaussian kernel. For largeσ one would expect the estimated function
to be very smooth, whereas for smallσ one would expect the estimated function to
be very local, in the sense discussed earlier: the near neighbors ofx have dominating
influence in the shape of the predictor atx.

The following proposition tells us what happens whenσ is large, or when we con-
sider what a ball whose radius is small compared toσ.

Proposition 6. For the Gaussian kernel classifier, asσ increases and becomes large
compared with the diameter of the data, within the smallest sphere containing the data
the decision surface becomes linear if

∑

i αi = 0 (e.g., for SVMs), or else the normal
vector of the decision surface becomes a linear combinationof two sphere surface
normal vectors, with each sphere centered on a weighted average of the examples of
the corresponding class.

A proof can be found in Bengio et al. [2006a].
Note that with this proposition we see clearly that whenσ becomes large, a kernel

classifier becomes non-local (it approaches a linear classifier). However, this non-
locality is at the price of constraining the decision surface to be very smooth, making it
difficult to model highly varying decision surfaces. This isthe essence of the trade-off
between smoothness and locality in many similar non-parametric models (including
the classical ones such as k-nearest-neighbor and Parzen windows algorithms).

Now consider in what senses a Gaussian kernel machine is local (thinking about
σ small). Consider a test pointx that is near the decision surface. We claim that
the orientation of the decision surface is dominated by the neighborsxi of x in the
training set, making the predictorlocal in its derivative. If we consider theαi fixed (i.e.,
ignoring their dependence on the trainingxi’s), then it is obvious that the prediction
f(x) is dominated by the near neighborsxi of x, sinceK(x, xi) → 0 quickly when
||x − xi||/σ becomes large. However, theαi can be influenced by all thexj ’s. The
following proposition skirts that issue by looking at the first derivative off .
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x
xi

Figure 3: For local manifold learning algorithms such as LLE, Isomap and kernel PCA,
the manifold tangent plane atx is in the span of the difference vectors between test
pointx and its neighborsxi in the training set. This makes these algorithms sensitive
to the curse of dimensionality, when the manifold is high-dimensional and not very flat.

Proposition 7. For the Gaussian kernel classifier, the normal of the tangentof the
decision surface atx is constrained to approximately lie in the span of the vectors
(x − xi) with ||x − xi|| not large compared toσ andxi in the training set.

Sketch of the Proof
The estimator isf(x) =

∑

i αiK(x, xi). The normal vector of the tangent plane at
a pointx of the decision surface is

∂f(x)

∂x
=
∑

i

αi
(xi − x)

σ2
K(x, xi).

Each term is a vector proportional to the difference vectorxi−x. This sum is dominated
by the terms with||x − xi|| not large compared toσ. We are thus left with∂f(x)

∂x
approximately in the span of the difference vectorsx − xi with xi a near neighbor of
x. Theαi being only scalars, they only influence the weight of each neighborxi in
that linear combination. Hence althoughf(x) can be influenced byxi far fromx, the
decision surface nearx has a normal vector that is constrained to approximately liein
the span of the vectorsx − xi with xi nearx. Q.E.D.

The constraint of∂f(x)
∂x being in the span of the vectorsx − xi for neighborsxi

of x is not strong if the manifold of interest (e.g., the region ofthe decision surface
with high density) has low dimensionality. Indeed if that dimensionality is smaller or
equal to the number of dominating neighbors, then there is noconstraint at all. How-
ever, when modeling complex dependencies involving many factors of variation, the
region of interest may have very high dimension (e.g., consider the effect of variations
that have arbitrarily large dimension, such as changes in clutter, background , etc. in
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images). For such a complex highly-varying target function, we also need a very local
predictor (σ small) in order to accurately represent all the desired variations. With a
smallσ, the number of dominating neighbors will be small compared to the dimension
of the manifold of interest, making this locality in the derivative a strong constraint,
and allowing the following curse of dimensionality argument.

This notion of locality in the sense of the derivative allowsus to define a ball around
each test pointx, containing neighbors that have a dominating influence on∂f(x)

∂x .
Smoothness within that ball constrains the decision surface to be approximately either
linear (case of SVMs) or a particular quadratic form (the decision surface normal vector
is a linear combination of two vectors defined by the center ofmass of examples of each
class). LetN be the number of such balls necessary to cover the regionΩ where the
value of the estimator is desired (e.g., near the target decision surface, in the case of
classification problems). Letk be the smallest number such that one needs at leastk
examples in each ball to reach error levelǫ. The number of examples thus required
is kN . To see thatN can be exponential in some dimension, consider the maximum
radiusr of all these balls and the radiusR of Ω. If Ω has intrinsic dimensiond, thenN
could be as large as the number of radius-r balls that can tile ad-dimensional manifold

of radiusR, which is on the order of
(

R
r

)d
.

In Bengio et al. [2005] we present similar results that applyto unsupervised learn-
ing algorithms such as non-parametric manifold learning algorithms [Roweis and Saul,
2000, Tenenbaum et al., 2000, Schölkopf et al., 1998, Belkin and Niyogi, 2003]. We
find that when the underlying manifold varies a lot in the sense of having high curva-
ture in many places, then a large number of examples is required. Note that the tangent
plane of the manifold is defined by the derivatives of the kernel machine functionf , for
such algorithms. The core result is that the manifold tangent plane atx is dominated
by terms associated with the near neighbors ofx in the training set (more precisely it is
constrained to be in the span of the vectorsx − xi, with xi a neighbor ofx). This idea
is illustrated in figure 3. In the case of graph-based manifold learning algorithms such
as LLE and Isomap, the domination of near examples is perfect(i.e., the derivative is
strictly in the span of the difference vectors with the neighbors), because the kernel im-
plicit in these algorithms takes value 0 for the non-neighbors. With such local manifold
learning algorithms, one needs to cover the manifold with small enough linear patches
with at leastd+1 examples per patch (whered is the dimension of the manifold). This
argument was previously introduced in Bengio and Monperrus[2005] to describe the
limitations of neighborhood-based manifold learning algorithms.

An example that illustrates that many interesting manifolds can have high curvature
is that of translation of high-contrast images, shown in figure 4. The same argument
applies to the other geometric invariances of images of objects.

5 Deep Architectures

The analyzes in the previous sections point to the difficultyof learninghighly-varying
functions. These are functions with a large number ofvariations(twists and turns) in
the domain of interest, e.g., they would require a large number of pieces to be well-
represented by a piecewise-linear approximation. Since the number of pieces can be
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tangent directions

tangent image

tangent directions

tangent image

shifted
image

high−contrast image

Figure 4: The manifold of translations of a high-contrast image has high curvature. A
smooth manifold is obtained by considering that an image is asample on a discrete
grid of an intensity function over a two-dimensional space.The tangent vector for
translation is thus atangent image, and it has high values only on the edges of the ink.
The tangent plane for an image translated by only one pixel looks similar but changes
abruptly since the edges are also shifted by one pixel. Hencethe two tangent planes are
almost orthogonal, and the manifold has high curvature, which is bad for local learning
methods, which must cover the manifold with many small linear patches to correctly
capture its shape.

made to grow exponentially with the number of input variables, this problem is directly
connected with the well-known curse of dimensionality for classical non-parametric
learning algorithms (for regression, classification and density estimation). If the shapes
of all these pieces are unrelated, one needs enough examplesfor each piece in order
to generalize properly. However, if these shapes are related and can be predicted from
each other,non-local learning algorithmshave the potential to generalize to pieces not
covered by the training set. Such ability would seem necessary for learning in complex
domains such as in the AI-set.

One way to represent a highly-varying function compactly (with few parameters)
is through the composition of many non-linearities. Such multiple composition of non-
linearities appear to grant non-local properties to the estimator, in the sense that the
value off(x) or f ′(x) can be strongly dependent on training examples far fromxi

while at the same time allowing to capture a large number of variations. We have al-
ready discussed parity and other examples (section 3.2) that strongly suggest that the
learning of more abstract functions is much more efficient when it is done sequentially,
by composing previously learned concepts. When the representation of a concept re-
quires an exponential number of elements, (e.g., with a shallow circuit), the number of
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training examples required to learn the concept may also be impractical.
Gaussian processes, SVMs, log-linear models, graph-basedmanifold learning and

graph-based semi-supervised learning algorithms can all be seen as shallow architec-
tures. Although multi-layer neural networks with many layers can represent deep cir-
cuits, training deep networks has always been seen as somewhat of a challenge. Until
very recently, empirical studies often found that deep networks generally performed no
better, and often worse, than neural networks with one or twohidden layers [Tesauro,
1992]. A notable exception to this is the convolutional neural network architecture [Le-
Cun et al., 1989, LeCun et al., 1998] discussed in the next section, that has a sparse con-
nectivity from layer to layer. Despite its importance, the topic of deep network training
has been somewhat neglected by the research community. However, a promising new
method recently proposed by Hinton et al. [2006] is causing aresurgence of interest in
the subject.

A common explanation for the difficulty of deep network learning is the presence
of local minima or plateaus in the loss function. Gradient-based optimization meth-
ods that start from random initial conditions appear to often get trapped in poor local
minima or plateaus. The problem seems particularly dire fornarrow networks (with
few hidden units or with a bottleneck) and for networks with many symmetries (i.e.,
fully-connected networks in which hidden units are exchangeable). The solution re-
cently introduced by Hinton et al. [2006] for training deep layered networks is based
on a greedy, layer-wise unsupervised learning phase . The unsupervised learning phase
provides an initial configuration of the parameters with which a gradient-based super-
vised learning phase is initialized. The main idea of the unsupervised phase is to pair
each feed-forward layer with a feed-back layer that attempts to reconstruct the input
of the layer from its output. This reconstruction criterionguarantees that most of the
information contained in the input is preserved in the output of the layer. The resulting
architecture is a so-called Deep Belief Networks (DBN). After the initial unsupervised
training of each feed-forward/feed-back pair, the feed-forward half of the network is
refined using a gradient-descent based supervised method (back-propagation). This
training strategyholds great promise as a principle to break through the problem of
training deep networks. Upper layers of a DBN are supposed to represent more abstract
concepts that explain the input observationx, whereas lower layers extract low-level
features fromx. Lower layers learn simpler concepts first, and higher layers build on
them to learn more abstract concepts. This strategy has not yet been much exploited
in machine learning, but it is at the basis of the greedy layer-wise constructive learning
algorithm for DBNs. More precisely, each layer is trained inan unsupervised way so as
to capture the main features of the distribution it sees as input. It produces an internal
representation for its input that can be used as input for thenext layer. In a DBN, each
layer is trained as a Restricted Boltzmann Machine [Teh and Hinton, 2001] using the
Contrastive Divergence [Hinton, 2002] approximation of the log-likelihood gradient.
The outputs of each layer (i.e., hidden units) constitute a factored and distributed rep-
resentation that estimates causes for the input of the layer. After the layers have been
thus initialized, a final output layer is added on top of the network (e.g., predicting
the class probabilities), and the whole deep network is fine-tuned by a gradient-based
optimization of the prediction error. The only difference with an ordinary multi-layer
neural network resides in the initialization of the parameters, which is not random, but
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is performed through unsupervised training of each layer ina sequential fashion.
Experiments have been performed on the MNIST and other datasets to try to un-

derstand why the Deep Belief Networks are doing much better than either shallow
networks or deep networks with random initialization. These results are reported and
discussed in [Bengio et al., 2007]. Several conclusions canbe drawn from these exper-
iments, among which the following, of particular interest here:

1. Similar results can be obtained by training each layer as an auto-associator in-
stead of a Restricted Boltzmann Machine, suggesting that a rather general prin-
ciple has been discovered.

2. Test classification error is significantly improved with such greedy layer-wise
unsupervised initialization over either a shallow networkor a deep network with
the same architecture but with random initialization. In all cases many possible
hidden layer sizes were tried, and selected based on validation error.

3. When using a greedy layer-wise strategy that issupervisedinstead of unsuper-
vised, the results are not as good, probably because it istoo greedy: unsupervised
feature learning extracts more information than strictly necessary for the predic-
tion task, whereas greedy supervised feature learning (greedy because it does not
take into account that there will be more layers later) extracts less information
than necessary, which prematurely scuttles efforts to improve by adding layers.

4. The greedy layer-wise unsupervised strategy helps generalization mostly be-
cause it helps the supervised optimization to get started near a better solution.

6 Experiments with Visual Pattern Recognition

One essential question when designing a learning architecture is how to represent in-
variance. While invariance properties are crucial to any learning task, it is particularly
apparent in visual pattern recognition. In this section we consider several experiments
in handwriting recognition and object recognition to illustrate the relative advantages
and disadvantages of kernel methods, shallow architectures, and deep architectures.

6.1 Representing Invariance

The example of figure 4 shows that the manifold containing alltranslated versions of a
character image has high curvature. Because the manifold ishighly varying, a classifier
that is invariant to translations (i.e., that produces a constant output when the input
moves on the manifold, but changes when the input moves to another class manifold)
needs to compute a highly varying function. As we showed in the previous section,
template-based methods are inefficient at representing highly-varying functions. The
number of such variations may increase exponentially with the dimensionality of the
manifolds where the input density concentrates. That dimensionality is the number of
dimensions along which samples within a category can vary.

We will now describe two sets of results with visual pattern recognition. The first
part is a survey of results obtained with shallow and deep architectures on the MNIST
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dataset, which contains isolated handwritten digits. The second part analyzes results of
experiments with the NORB dataset, which contains objects from five different generic
categories, placed on uniform or cluttered backgrounds.

For visual pattern recognition, Type-2 architectures havetrouble handling the wide
variability of appearance in pixel images that result from variations in pose, illumi-
nation, and clutter, unless an impracticably large number of templates (e.g., support
vectors) are used. Ad-hoc preprocessing and feature extraction can, of course, be used
to mitigate the problem, but at the expense of human labor. Here, we will concentrate
on methods that deal with raw pixel data and that integrate feature extraction as part of
the learning process.

6.2 Convolutional Networks

Convolutional nets are multi-layer architectures in whichthe successive layers are de-
signed to learn progressively higher-level features, until the last layer which represents
categories. All the layers are trained simultaneously to minimize an overall loss func-
tion. Unlike with most other models of classification and pattern recognition, there is
no distinct feature extractor and classifier in a convolutional network. All the layers are
similar in nature and trained from data in an integrated fashion.

The basic module of a convolutional net is composed of afeature detection layer
followed by afeature pooling layer. A typical convolutional net is composed of one,
two or three such detection/pooling modules in series, followed by a classification
module. The input state (and output state) of each layer can be seen as a series of
two-dimensional retinotopic arrays called feature maps. At layer i, the valuecijxy

produced by thej-th feature detection layer at position(x, y) in the j-th feature map
is computed by applying a series of convolution kernelswijk to feature maps in the
previous layer (with indexi − 1), and passing the result through a hyperbolic tangent
sigmoid function:

cijxy = tanh

(

bij +
∑

k

Pi−1
∑

p=0

Qi−1
∑

q=0

wijkpqc(i−1),k,(x+p),(y+q)

)

(4)

wherePi andQi are the width and height of the convolution kernel. The convolution
kernel parameterswijkpq and the biasbij are subject to learning. A feature detection
layer can be seen as a bank of convolutional filters followed by a point-wise non-
linearity. Each filter detects a particular feature at everylocation on the input. Hence
spatially translating the input of a feature detection layer will translate the output but
leave it otherwise unchanged. Translation invariance is normally built-in by constrain-
ing wijkpq = wijkp′q′ for all p, p′, q, q′, i.e., the same parameters are used at different
locations.

A feature pooling layer has the same number of features in themap as the feature
detection layer that precedes it. Each value in a subsampling map is the average (or
the max) of the values in a local neighborhood in the corresponding feature map in
the previous layer. That average or max is added to a trainable bias, multiplied by a
trainable coefficient, and the result is passed through a non-linearity (e.g., thetanh
function). The windows are stepped without overlap. Therefore the maps of a feature
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Figure 5: The architecture of the convolutional net used forthe NORB experiments.
The input is an image pair, the system extracts 8 feature mapsof size92 × 92, 8 maps
of 23× 23, 24 maps of18× 18, 24 maps of6× 6, and 100 dimensional feature vector.
The feature vector is then transformed into a 5-dimensionalvector in the last layer to
compute the distance with target vectors.

pooling layer are less than the resolution of the maps in the previous layer. The role
of the pooling layer is build a representation that is invariant to small variations of the
positions of features in the input. Alternated layers of feature detection and feature
pooling can extract features from increasingly large receptive fields, with increasing
robustness to irrelevant variabilities of the inputs. The last module of a convolutional
network is generally a one- or two-layer neural net.

Training a convolutional net can be performed with stochastic (on-line) gradient
descent, computing the gradients with a variant of the back-propagation method. While
convolutional nets are deep (generally 5 to 7 layers of non-linear functions), they do not
seem to suffer from the convergence problems that plague deep fully-connected neural
nets. While there is no definitive explanation for this, we suspect that this phenomenon
is linked to the heavily constrained parameterization, as well as to the asymmetry of
the architecture.

Convolutional nets are being used commercially in several widely-deployed sys-
tems for reading bank check [LeCun et al., 1998], recognizing handwriting for tablet-
PC, and for detecting faces, people, and objects in videos inreal time.

6.3 The lessons from MNIST

MNIST is a dataset of handwritten digits with 60,000 training samples and 10,000 test
samples. Digit images have been size-normalized so as to fit within a 20 × 20 pixel
window, and centered by center of mass in a28 × 28 field. With this procedure, the
position of the characters vary slightly from one sample to another. Numerous authors
have reported results on MNIST, allowing precise comparisons among methods. A
small subset of relevant results is listed in table 1. Not allgood results on MNIST
are listed in the table. In particular, results obtained with deslanted images or with
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hand-designed feature extractors were left out.
Results are reported with three convolutional net architectures: LeNet-5, LeNet-6,

and the subsampling convolutional net of [Simard et al., 2003]. The input field is a
32× 32 pixel map in which the28× 28 images are centered. In LeNet-5 [LeCun et al.,
1998], the first feature detection layer produces 6 feature maps of size28 × 28 using
5 × 5 convolution kernels. The first feature pooling layer produces 614 × 14 feature
maps through a2× 2 subsampling ratio and2× 2 receptive fields. The second feature
detection layer produces 16 feature maps of size10 × 10 using5 × 5 convolution
kernels, and is followed by a pooling layer with2 × 2 subsampling. The next layer
produces 100 feature maps of size1 × 1 using5 × 5 convolution kernels. The last
layer produces 10 feature maps (one per output category). LeNet-6 has a very similar
architecture, but the number of feature maps at each level are much larger: 50 feature
maps in the first layer, 50 in the third layer, and 200 feature maps in the penultimate
layer.

The convolutional net in [Simard et al., 2003] is somewhat similar to the original
one in [LeCun et al., 1989] in that there is no separate convolution and subsampling
layers. Each layer computes a convolution with a subsampledresult (there is no feature
pooling operation). Their simple convolutional network has 6 features at the first layer,
with 5 by 5 kernels and 2 by 2 subsampling, 60 features at the second layer, also with 5
by 5 kernels and 2 by 2 subsampling, 100 features at the third layer with 5 by 5 kernels,
and 10 output units.

The MNIST samples are highly variable because of writing style, but have little
variation due to position and scale. Hence, it is a dataset that is particularly favorable
for template-based methods. Yet, the error rate yielded by Support Vector Machines
with Gaussian kernel (1.4% error) is only marginally betterthan that of a considerably
smaller neural net with a single hidden layer of 800 hidden units (1.6% as reported
by [Simard et al., 2003]), and similar to the results obtained with a 3-layer neural net as
reported in [Hinton et al., 2006] (1.53% error). The best results on the original MNIST
set with a knowledge free method was reported in [Hinton et al., 2006] (0.95% error),
using a Deep Belief NetworkBy knowledge-free method, we mean a method that has
no prior knowledge of the pictorial nature of the signal. Those methods would produce
exactly the same result if the input pixels were scrambled with a fixed permutation.

Convolutional nets use the pictorial nature of the data, andthe invariance of cate-
gories to small geometric distortions. It is a broad (low complexity) prior, which can
be specified compactly (with a short piece of code). Yet it brings about a considerable
reduction of the ensemble of functions that can be learned. The best convolutional
net on the unmodified MNIST set is LeNet-6, which yields a record 0.60%. As with
Hinton’s results, this result was obtained by initializingthe filters in the first layer us-
ing an unsupervised algorithm, prior to training with back-propagation [Ranzato et al.,
2006]. The same LeNet-6 trained purely supervised from random initialization yields
0.70% error. A smaller convolutional net, LeNet-5 yields 0.80%. The same network
was reported to yield 0.95% in [LeCun et al., 1998] with a smaller number of training
iterations.

When the training set is augmented with elastically distorted versions of the training
samples, the test error rate (on the original, non-distorted test set) drops significantly. A
conventional 2-layer neural network with 800 hidden units yields 0.70% error [Simard
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Classifier Defor- Error Reference
mations %

Knowledge-free methods
2-layer NN, 800 hid. units 1.60 Simard et al. 2003
3-layer NN, 500+300 units 1.53 Hinton et al. 2006
SVM, Gaussian kernel 1.40 Cortes et al. 1992
Unsupervised stacked RBM + backprop 0.95 Hinton et al. 2006

Convolutional networks
Convolutional network LeNet-5 0.80 Ranzato et al. 2006
Convolutional network LeNet-6 0.70 Ranzato et al. 2006
Conv. net. LeNet-6 + unsup. learning 0.60 Ranzato et al. 2006

Training set augmented with affine distortions
2-layer NN, 800 hid. units Affine 1.10 Simard et al. 2003
Virtual SVM, deg. 9 poly Affine 0.80 DeCoste et al. 2002
Convolutional network, Affine 0.60 Simard et al. 2003

Training set augmented with elastic distortions
2-layer NN, 800 hid. units Elastic 0.70 Simard et al. 2003
SVM Gaussian Ker. + on-line training Elastic 0.67 this volume, chapter 13
Shape context features + elastic K-NN Elastic 0.63 Belongieet al. 2002
Convolutional network Elastic 0.40 Simard et al. 2003
Conv. net. LeNet-6 Elastic 0.49 Ranzato et al. 2006
Conv. net. LeNet-6 + unsup. learning Elastic 0.39 Ranzato etal. 2006

Table 1: Test error rates of various learning models on the MNIST dataset. Many
results obtained with deslanted images or hand-designed feature extractors were left
out.

et al., 2003]. While SVMs slightly outperform 2-layer neural nets on the undistorted
set, the advantage all but disappears on the distorted set. In this volume, Loosli et
al. report 0.67% error with a Gaussian SVM and a sample selection procedure. The
number of support vectors in the resulting SVM is considerably larger than 800.

Convolutional nets applied to the elastically distorted set achieve between 0.39%
and 0.49% error, depending on the architecture, the loss function, and the number of
training epochs. Simard et al. [2003] reports 0.40% with a subsampling convolutional
net. Ranzato et al. [2006] report 0.49% using LeNet-6 with random initialization, and
0.39% using LeNet-6 with unsupervised pre-training of the first layer. This is the best
error rate ever reported on the original MNIST test set.

Hence a deep network, with small dose of prior knowledge embedded in the archi-
tecture, combined with a learning algorithm that can deal with millions of examples,
goes a long way towards improving performance. Not only do deep networks yield
lower error rates, they are faster to run and faster to train on large datasets than the best
kernel methods.
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Figure 6: The 25 testing objects in thenormalized-uniformNORB set. The testing
objects are unseen by the trained system.

6.4 The lessons from NORB

While MNIST is a useful benchmark, its images are simple enough to allow a global
template matching scheme to perform well. Natural images of3D objects with back-
ground clutter are considerably more challenging. NORB [LeCun et al., 2004] is a
publicly available dataset of object images from 5 generic categories. It contains im-
ages of 50 different toys, with 10 toys in each of the 5 genericcategories: four-legged
animals, human figures, airplanes, trucks, and cars. The 50 objects are split into a
training set with 25 objects, and a test set with the remaining 25 object (see examples
in Figure 6).

Each object is captured by a stereo camera pair in 162 different views (9 elevations,
18 azimuths) under 6 different illuminations. Two datasetsderived from NORB are
used. The first dataset, called thenormalized-uniformset, are images of a single object
with a normalized size placed at the center of images with uniform background. The
training set has 24,300 stereo image pairs of size 96×96, and another 24,300 for testing
(from different object instances).

The second set, thejittered-clutteredset, contains objects with randomly perturbed
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positions, scales, in-plane rotation, brightness, and contrast. The objects are placed
on highly cluttered backgrounds and other NORB objects placed on the periphery. A
6-th category of images is included: background images containing no objects. Some
examples images of this set are shown in figure 7. Each image inthe jittered-cluttered
set is randomly perturbed so that the objects are at different positions ([-3, +3] pixels
horizontally and vertically), scales (ratio in [0.8, 1.1]), image-plane angles ([−5◦, 5◦]),
brightness ([-20, 20] shifts of gray scale), and contrasts ([0.8, 1.3] gain). The central
object could be occluded by the randomly placed distractor.To generate the training
set, each image was perturbed with 10 different configurations of the above parameters,
which makes up 291,600 image pairs of size 108×108. The testing set has 2 drawings
of perturbations per image, and contains 58,320 pairs.

In the NORB datasets, the only useful and reliable clue is theshape of the object,
while all the other parameters that affect the appearance are subject to variation, or
are designed to contain no useful clue. Parameters that are subject to variation are:
viewing angles (pose), lighting conditions. Potential clues whose impact was elimi-
nated include: color (all images are grayscale), and objecttexture. For specific object
recognition tasks, the color and texture information may behelpful, but for generic
recognition tasks the color and texture information are distractions rather than useful
clues. By preserving natural variabilities and eliminating irrelevant clues and system-
atic biases, NORB can serve as a benchmark dataset in which nohidden regularity that
would unfairly advantage some methods over others can be used.

A six-layer net dubbed LeNet-7, shown in figure 5, was used in the experiments
with the NORB dataset reported here. The architecture is essentially identical to that
of LeNet-5 and LeNet-6, except of the sizes of the feature maps. The input is a pair of
96×96 gray scale images. The first feature detection layer uses twelve 5×5 convolution
kernels to generate 8 feature maps of size92 × 92. The first 2 maps take input from
the left image, the next two from the right image, and the last4 from both. There
are 308 trainable parameters in this layer. The first featurepooling layer uses a 4×4
subsampling, to produce 8 feature maps of size23 × 23. The second feature detection
layer uses 96 convolution kernels of size 6×6 to output 24 feature maps of size18 ×
18. Each map takes input from 2 monocular maps and 2 binocular maps, each with
a different combination, as shown in figure 8. This configuration is used to combine
features from the stereo image pairs. This layer contains 3,480 trainable parameters.
The next pooling layer uses a 3×3 subsampling which outputs 24 feature maps of size
6 × 6. The next layer has6 × 6 convolution kernels to produce 100 feature maps of
size1 × 1, and the last layer has 5 units. In the experiments, we also report results
using a hybrid method, which consists in training the convolutional network in the
conventional way, chopping off the last layer, and traininga Gaussian kernel SVM on
the output of the penultimate layer. Many of the results in this section were previously
reported in [Huang and LeCun, 2006].

6.5 Results on thenormalized-uniform set

Table 2 shows the results on the smaller NORB dataset with uniform background.
This dataset simulates a scenario in which objects can be perfectly segmented from
the background, and is therefore rather unrealistic.
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SVM Conv Net SVM/Conv

test error 11.6% 10.4% 6.0% 6.2% 5.9%
train time

480 64 448 3,200 50+
(min*GHz)

test time
0.95 0.04+per sample 0.03

(sec*GHz)
fraction of S.V. 28% 28%

parameters
dim=80

σ=2,000 step size = σ=5
C=40 2×10

−5 - 2×10
−7

C=0.01

Table 2: Testing error rates and training/testing timings on the normalized-uniform
dataset of different methods. The timing is normalized to hypothetical 1GHz single
CPU. The convolutional nets have multiple results with different training passes due to
iterative training.

The SVM is composed of five binary SVMs that are trained to classify one object
category against all other categories. The convolutional net trained on this set has a
smaller penultimate layer with 80 outputs. The input features to the SVM of the hybrid
system are accordingly 80-dimensional vectors.

The timing figures in Table 2 represent the CPU time on a fictitious 1GHz CPU. The
results of the convolutional net trained after 2, 14, 100 passes are listed in the table. The
network is slightly over-trained with more than 30 passes (no regularization was used in
the experiment). The SVM in the hybrid system is trained overthe features extracted
from the network trained with 100 passes. The improvement ofthe combination is
marginal over the convolutional net alone.

Despite the relative simplicity of the task (no position variation, uniform back-
grounds, only 6 types of illuminations), the SVM performs rather poorly. Interestingly,
it require a very large amount of CPU time for training and testing. The convolutional
net reaches the same error rate as the SVM with 8 times less training time. Further
training halves the error rate. It is interesting that despite its deep architecture, its
non-convex loss, the total absence of explicit regularization, and a lack of tight gener-
alization bounds, the convolutional net is both better and faster than an SVM.

6.6 Results on thejittered-cluttered set

The results on this set are shown in table 3. To classify the 6 categories, 6 binary (“one
vs. others”) SVM sub-classifiers are trained independently, each with the full set of
291,600 samples. The training samples are raw108 × 108 pixel image pairs turned
into a 23,328-dimensional input vector, with values between 0 to 255.

SVMs have relatively few free parameters to tune prior to learning. In the case of
Gaussian kernels, one can chooseσ (Gaussian kernel sizes) andC (penalty coefficient)
that yield best results by grid tuning. A rather disappointing test error rate of43.3% is
obtained on this set, as shown in the first column of table 3. The training time depends
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SVM Conv Net SVM/Conv

test error 43.3% 16.38% 7.5% 7.2% 5.9%
train time

10,944 420 2,100 5,880 330+
(min*GHz)

test time
2.2 0.06+per sample 0.04

(sec*GHz)
#SV 5% 2%

parameters
dim=100

σ=10
4 step size = σ=5

C=40 2×10
−5 - 1×10

−6
C=1

Table 3: Testing error rates and training/testing timings on thejittered-cluttereddataset
of different methods. The timing is normalized to hypothetical 1GHz single CPU. The
convolutional nets have multiple results with different training passes due to its iterative
training.

heavily on the value ofσ for Gaussian kernel SVMs. The experiments are run on a
64-CPU (1.5GHz) cluster, and the timing information is normalized into a hypothetical
1GHz single CPU to make the measurement meaningful.

For the convolutional net LeNet-7, we listed results after different number of passes
(1, 5, 14) and their timing information. The test error rate flattens out at7.2% after
about 10 passes. No significant over-training was observed,and no early stopping was
performed. One parameter controlling the training procedure must be heuristically cho-
sen: the global step size of the stochastic gradient procedure. Best results are obtained
by adopting a schedule in which this step size is progressively decreased.

A full propagation of one data sample through the network requires about 4 mil-
lion multiply-add operations. Parallelizing the convolutional net is relatively simple
since multiple convolutions can be performed simultaneously, and each convolution
can be performed independently on sub-regions of the layers. The convolutional nets
are computationally very efficient. The training time scales sublinearly with dataset
size in practice, and the testing can be done in real-time at arate of a few frames per
second.

The third column shows the result of a hybrid system in which the last layer of
the convolutional net was replaced by a Gaussian SVM after training. The training
and testing features are extracted with the convolutional net trained after 14 passes.
The penultimate layer of the network has 100 outputs, therefore the features are 100-
dimensional. The SVMs applied on features extracted from the convolutional net yield
an error rate of5.9%, a significant improvement over either method alone. By incorpo-
rating a learned feature extractor into the kernel function, the SVM was indeed able to
leverage both the ability to use low-level spatially local features and at the same time
keep all the advantages of a large margin classifier.

The poor performance of SVM with Gaussian kernels on raw pixels is not unex-
pected. As we pointed out in previous sections, a Gaussian kernel SVM merely com-
putes matching scores (based on Euclidean distance) between the incoming pattern and
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templates from the training set. This global template matching is very sensitive to vari-
ations in registration, pose, and illumination. More importantly, most of the pixels in
a NORB image are actually on the background clutter, rather than on the object to be
recognized. Hence the template matching scores are dominated by irrelevant variabili-
ties of the background. This points to a crucial deficiency ofstandard kernel methods:
their inability to select relevant input features, and ignore irrelevant ones.

SVMs have presumed advantages provided by generalization bounds, capacity con-
trol through margin maximization, a convex loss function, and universal approximation
properties. By contrast, convolutional nets have no generalization bounds (beyond the
most general VC bounds), no explicit regularization, a highly non-convex loss func-
tion, and no claim to universality. Yet the experimental results with NORB show that
convolutional nets are more accurate than Gaussian SVMs by afactor of 6, faster to
train by a large factor (2 to 20), and faster to run by a factor of 50.

7 Conclusion

This work was motivated by our requirements for learning algorithms that could ad-
dress the challenge of AI, which include statistical scalability, computational scala-
bility and human-labor scalability. Because the set of tasks involved in AI is widely
diverse, engineering a separate solution for each task seems impractical. We have
explored many limitations ofkernel machinesand othershallow architectures. Such
architectures are inefficient for representing complex, highly-varying functions, which
we believe are necessary for AI-related tasks such as invariant perception.

One limitation was based on the well-known depth-breadth tradeoff in circuits de-
sign Hastad [1987]. This suggests that many functions can bemuch more efficiently
represented with deeper architectures, often with a modestnumber of levels (e.g., log-
arithmic in the number of inputs).

The second limitation regards mathematical consequences of the curse of dimen-
sionality. It applies to local kernels such as the Gaussian kernel, in whichK(x, xi)
can be seen as a template matcher. It tells us that architectures relying on local kernels
can be very inefficient at representing functions that have many variations, i.e., func-
tions that are not globally smooth (but may still be locally smooth). Indeed, it could be
argued thatkernel machines are little more than souped-up template matchers.

A third limitation pertains to the computational cost of learning. In theory, the con-
vex optimization associated with kernel machine learning yields efficient optimization
and reproducible results. Unfortunately, most current algorithms are (at least) quadratic
in the number of examples. This essentially precludes theirapplication to very large-
scale datasets for which linear- or sublinear-time algorithms are required (particularly
for on-line learning). This problem is somewhat mitigated by recent progress with on-
line algorithms for kernel machines (e.g., see [Bordes et al., 2005]), but there remains
the question of the increase in the number of support vectorsas the number of examples
increases.

A fourth and most serious limitation, which follows from thefirst (shallowness) and
second (locality) pertains to inefficiency inrepresentation. Shallow architectures and
local estimators are simply too inefficient (in terms of required number of examples and
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adaptable components) to represent many abstract functions of interest. Ultimately, this
makes them unaffordable if our goal is to learn the AI-set. Wedo not mean to suggest
that kernel machines have no place in AI. For example, our results suggest that com-
bining a deep architecture with a kernel machine that takes the higher-level learned
representation as input can be quite powerful. Learning thetransformation from pixels
to high-level features before applying an SVM is in fact a wayto learn the kernel. We
do suggest that machine learning researchers aiming at the AI problem should investi-
gate architectures that do not have the representational limitations of kernel machines,
and deep architectures are by definition not shallow and usually not local as well.

Until recently, many believed that training deep architectures was too difficult an
optimization problem. However, at least two different approaches have worked well
in training such architectures: simple gradient descent applied to convolutional net-
works [LeCun et al., 1989, LeCun et al., 1998] (for signals and images), and more
recently, layer-by-layer unsupervised learning followedby gradient descent [Hinton
et al., 2006, Bengio et al., 2007, Ranzato et al., 2006]. Research on deep architectures
is in its infancy, and better learning algorithms for deep architectures remain to be dis-
covered. Taking a larger perspective on the objective of discovering learning principles
that can lead to AI has been a guiding perspective of this work. We hope to have helped
inspire others to seek a solution to the problem of scaling machine learning towards AI.
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with online and active learning.Journal of Machine Learning Research, 6:1579–
1619, September 2005.

Bernhard Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. InFifth Annual Workshop on Computational Learning
Theory, pages 144–152, Pittsburgh, 1992.

Matthew Brand. Charting a manifold. In S. Becker, S. Thrun, and K. Obermayer,
editors,Advances in Neural Information Processing Systems 15. MIT Press, 2003.

Corinna Cortes and Vladimir N. Vapnik. Support vector networks. Machine Learning,
20:273–297, 1995.

Dennis DeCoste and Bernhard Schölkopf. Training invariant support vector machines.
Machine Learning, 46:161–190, 2002.

37



Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric
function induction in semi-supervised learning. In R.G. Cowell and Z. Ghahramani,
editors,Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, pages 96–103. Society for
Artificial Intelligence and Statistics, 2005.

Richard O. Duda and Peter E. Hart.Pattern Classification and Scene Analysis. Wiley,
New York, 1973.
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Figure 7: Some of the 291,600 examples from thejittered-clutteredtraining set (left
camera images). Each column shows images from one category.A 6-th background
category is added

Figure 8: The learned convolution kernels of the C3 layer. The columns correspond to
the 24 feature maps output by C3, and the rows correspond to the 8 feature maps output
by the S2 layer. Each feature map draw from 2 monocular maps and 2 binocular maps
of S2. 96 convolution kernels are use in total.
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