Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline | |
model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese') | |
tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese') | |
sentiment_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) | |
examples=["ε°ηΊ’ζ£ε¨εδΈεηΎε³ηθη³γ","ε°ηΊ’ε¨θη³ιεη°δΊδΈεͺθθγ"] | |
def classifier(text): | |
pred = sentiment_classifier(text) | |
print('pred=',pred) | |
pred_out = [] | |
if pred[0]['label'][0:4] == 'posi': | |
dict_nega = { 'label' : 'ζΆζ', 'score':1 - pred[0]['score'], } | |
dict_posi = {'label':'η§―ζ', 'score':pred[0]['score'],} | |
pred_out.append(dict_nega) | |
pred_out.append(dict_posi) | |
else: | |
dict_nega = {'label':'ζΆζ', 'score':pred[0]['score'],} | |
dict_posi = {'label':'η§―ζ', 'score':1-pred[0]['score'],} | |
pred_out.append(dict_nega) | |
pred_out.append(dict_posi) | |
return {p["label"]: p["score"] for p in pred_out} | |
demo = gr.Interface(classifier, | |
gr.Textbox(label="Input Text"), | |
gr.Label(label="Predicted Sentiment"), | |
examples=examples) | |
demo.launch() | |