WXM2000's picture
Update app.py
d2fc8c9
raw
history blame
1.33 kB
import gradio as gr
from transformers import pipeline
from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline
model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese')
tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-jd-binary-chinese')
sentiment_classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
examples=["ε°ηΊ’ζ­£εœ¨εƒδΈ€ε—ηΎŽε‘³ηš„θ›‹η³•γ€‚","ε°ηΊ’εœ¨θ›‹η³•ι‡Œε‘ηŽ°δΊ†δΈ€εͺ苍蝇。"]
def classifier(text):
pred = sentiment_classifier(text)
print('pred=',pred)
pred_out = []
if pred[0]['label'][0:4] == 'posi':
dict_nega = { 'label' : '梈极', 'score':1 - pred[0]['score'], }
dict_posi = {'label':'积极', 'score':pred[0]['score'],}
pred_out.append(dict_nega)
pred_out.append(dict_posi)
else:
dict_nega = {'label':'梈极', 'score':pred[0]['score'],}
dict_posi = {'label':'积极', 'score':1-pred[0]['score'],}
pred_out.append(dict_nega)
pred_out.append(dict_posi)
return {p["label"]: p["score"] for p in pred_out}
demo = gr.Interface(classifier,
gr.Textbox(label="Input Text"),
gr.Label(label="Predicted Sentiment"),
examples=examples)
demo.launch()