import gradio as gr from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration import tensorflow as tf print("Loading the model......") model_name = "WICKED4950/Irisonego5" strategy = tf.distribute.MirroredStrategy() tf.config.optimizer.set_jit(True) # Enable XLA tokenizer = AutoTokenizer.from_pretrained(model_name) with strategy.scope(): model = TFBlenderbotForConditionalGeneration.from_pretrained(model_name) print("Interface getting done....") # Define the chatbot function def predict(user_input): # Tokenize input text inputs = tokenizer(user_input, return_tensors="tf", padding=True, truncation=True) # Generate the response using the model response_id = model.generate( inputs['input_ids'], max_length=128, # Set max length of response do_sample=True, # Sampling for variability top_k=15, # Consider top 50 tokens top_p=0.95, # Nucleus sampling temperature=0.8 # Adjusts creativity of response ) # Decode the response response = tokenizer.decode(response_id[0], skip_special_tokens=True) return response # Gradio interface gr.Interface( fn=predict, inputs=gr.Textbox(label="Ask Iris anything!"), outputs=gr.Textbox(label="Iris's Response"), examples=[ ["What should I do if I'm feeling down?"], ["How do I deal with stress?"], ["Tell me something positive!"] ], description="A chatbot trained to provide friendly and comforting responses. Type your question below and let Iris help!", title="Iris - Your Friendly Mental Health Assistant", ).launch()