File size: 2,142 Bytes
7073eba
7e3c3ff
00d7a2e
cbc3cf5
9d3e711
cbc3cf5
07f8c16
007bdd0
4b69c94
 
dcb550c
4b69c94
7e3c3ff
2798e6f
c00d42c
 
a3bf946
 
8c3d406
5a80cec
a3bf946
 
9a420f2
cbc3cf5
07f8c16
2798e6f
4b69c94
 
 
 
 
092bb03
4b69c94
 
 
 
 
 
 
 
 
 
cbc3cf5
2798e6f
 
827c0a2
27c3fd1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
import tensorflow as tf
import json
import os

print("Loading the model......")
model_name = "WICKED4950/Irisonego5"
strategy = tf.distribute.MirroredStrategy()
tf.config.optimizer.set_jit(True)  # Enable XLA
tokenizer = AutoTokenizer.from_pretrained(model_name) 
with strategy.scope():
    model = TFBlenderbotForConditionalGeneration.from_pretrained(model_name)

def save_question(question,answer,path = "question_answer.json"):
    print(f"Saving data to: {os.path.abspath(path)}")
    with open(path, "r") as file:
        data = json.load(file)
    data["Interactions"].append({"Question:":question,"Answer:":answer})
    print(data)
    with open(path, "w") as file:
        json.dump(data, file, indent=4)
    print("saving question")
        
print("Interface getting done....")
# Define the chatbot function
def predict(user_input):
    # Tokenize input text
    inputs = tokenizer(user_input, return_tensors="tf", padding=True, truncation=True)

    # Generate the response using the model
    response_id = model.generate(
        inputs['input_ids'],
        max_length=128,         # Set max length of response
        do_sample=True,         # Sampling for variability
        top_k=15,               # Consider top 50 tokens
        top_p=0.95,             # Nucleus sampling
        temperature=0.8         # Adjusts creativity of response
    )

    # Decode the response
    response = tokenizer.decode(response_id[0], skip_special_tokens=True)
    save_question(question = user_input,answer=response)
    return response

# Gradio interface
gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Ask Iris anything!"),
    outputs=gr.Textbox(label="Iris's Response"),
    examples=[
        ["What should I do if I'm feeling down?"],
        ["How do I deal with stress?"],
        ["Tell me something positive!"]
    ],
     description="A chatbot trained to provide friendly and comforting responses. Type your question below and let Iris help!",
    title="Iris - Your Friendly Mental Health Assistant",
    
).launch()