Spaces:
Running
Running
File size: 947 Bytes
7073eba 2798e6f 711d57f 2798e6f a3fbe68 2798e6f 7073eba 2798e6f 7073eba 2798e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load your model and tokenizer
model_name = "WICKED4950/Irisbetterprecise" # Replace with your model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,from_tf=True)
# Define the chatbot function
def chatbot_response(input_text):
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(inputs, max_length=50, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create Gradio interface
interface = gr.Interface(
fn=chatbot_response,
inputs=gr.Textbox(label="Ask me anything!"),
outputs=gr.Textbox(label="Response"),
title="My Chatbot",
description="A simple chatbot deployed using Hugging Face Spaces and Gradio!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|