Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +11 -9
- requirements.txt +2 -1
app.py
CHANGED
@@ -29,7 +29,7 @@ fancy_header('\n📡 Connecting to Hopsworks Feature Store...')
|
|
29 |
project = hopsworks.login()
|
30 |
fs = project.get_feature_store()
|
31 |
feature_view = fs.get_feature_view(
|
32 |
-
name = '
|
33 |
version = 1
|
34 |
)
|
35 |
|
@@ -39,7 +39,7 @@ progress_bar.progress(20)
|
|
39 |
st.write(36 * "-")
|
40 |
fancy_header('\n☁️ Getting batch data from Feature Store...')
|
41 |
|
42 |
-
start_date = datetime.now() - timedelta(days=1
|
43 |
start_time = int(start_date.timestamp()) * 1000
|
44 |
|
45 |
X = feature_view.get_batch_data(start_time=start_time)
|
@@ -73,12 +73,13 @@ folium.LayerControl().add_to(my_map)
|
|
73 |
data_to_display = data_to_display[["city", "temp", "humidity",
|
74 |
"conditions", "aqi"]]
|
75 |
|
76 |
-
cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
if "Kyiv" in data_to_display["city"]:
|
81 |
-
|
82 |
|
83 |
data_to_display = data_to_display.set_index("city")
|
84 |
|
@@ -123,8 +124,8 @@ st.sidebar.write("-" * 36)
|
|
123 |
|
124 |
|
125 |
model = get_model(project=project,
|
126 |
-
model_name="
|
127 |
-
evaluation_metric="
|
128 |
sort_metrics_by="max")
|
129 |
|
130 |
preds = model.predict(X)
|
@@ -133,6 +134,7 @@ cities = [city_tuple[0] for city_tuple in cities_coords.keys()]
|
|
133 |
|
134 |
next_day_date = datetime.today() + timedelta(days=1)
|
135 |
next_day = next_day_date.strftime ('%d/%m/%Y')
|
|
|
136 |
df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
|
137 |
|
138 |
st.sidebar.write(df)
|
|
|
29 |
project = hopsworks.login()
|
30 |
fs = project.get_feature_store()
|
31 |
feature_view = fs.get_feature_view(
|
32 |
+
name = 'miami_air_quality_fv',
|
33 |
version = 1
|
34 |
)
|
35 |
|
|
|
39 |
st.write(36 * "-")
|
40 |
fancy_header('\n☁️ Getting batch data from Feature Store...')
|
41 |
|
42 |
+
start_date = datetime.now() - timedelta(days=4) # date today minus 2023-1-10
|
43 |
start_time = int(start_date.timestamp()) * 1000
|
44 |
|
45 |
X = feature_view.get_batch_data(start_time=start_time)
|
|
|
73 |
data_to_display = data_to_display[["city", "temp", "humidity",
|
74 |
"conditions", "aqi"]]
|
75 |
|
76 |
+
# cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
|
77 |
+
# ("Stockholm", "Sweden"): [59.334591, 18.063240],
|
78 |
+
# ("Malmo", "Sweden"): [55.604981, 13.003822]}
|
79 |
+
cities_coords = {("Miami", "USA"): [25.761681, -80.191788]}
|
80 |
|
81 |
+
# if "Kyiv" in data_to_display["city"]:
|
82 |
+
# cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333]
|
83 |
|
84 |
data_to_display = data_to_display.set_index("city")
|
85 |
|
|
|
124 |
|
125 |
|
126 |
model = get_model(project=project,
|
127 |
+
model_name="xgboost_model",
|
128 |
+
evaluation_metric="f1",
|
129 |
sort_metrics_by="max")
|
130 |
|
131 |
preds = model.predict(X)
|
|
|
134 |
|
135 |
next_day_date = datetime.today() + timedelta(days=1)
|
136 |
next_day = next_day_date.strftime ('%d/%m/%Y')
|
137 |
+
print('-------', preds, '------', X, '--------')
|
138 |
df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
|
139 |
|
140 |
st.sidebar.write(df)
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ pandas==1.5.2
|
|
7 |
python-dotenv==0.21.0
|
8 |
requests==2.28.1
|
9 |
streamlit==1.17.0
|
10 |
-
streamlit_folium==0.10.0
|
|
|
|
7 |
python-dotenv==0.21.0
|
8 |
requests==2.28.1
|
9 |
streamlit==1.17.0
|
10 |
+
streamlit_folium==0.10.0
|
11 |
+
xgboost==0.90
|