WCarlW commited on
Commit
fa86a8f
·
1 Parent(s): 8a6657f

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +11 -9
  2. requirements.txt +2 -1
app.py CHANGED
@@ -29,7 +29,7 @@ fancy_header('\n📡 Connecting to Hopsworks Feature Store...')
29
  project = hopsworks.login()
30
  fs = project.get_feature_store()
31
  feature_view = fs.get_feature_view(
32
- name = 'air_quality_fv',
33
  version = 1
34
  )
35
 
@@ -39,7 +39,7 @@ progress_bar.progress(20)
39
  st.write(36 * "-")
40
  fancy_header('\n☁️ Getting batch data from Feature Store...')
41
 
42
- start_date = datetime.now() - timedelta(days=1)
43
  start_time = int(start_date.timestamp()) * 1000
44
 
45
  X = feature_view.get_batch_data(start_time=start_time)
@@ -73,12 +73,13 @@ folium.LayerControl().add_to(my_map)
73
  data_to_display = data_to_display[["city", "temp", "humidity",
74
  "conditions", "aqi"]]
75
 
76
- cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
77
- ("Stockholm", "Sweden"): [59.334591, 18.063240],
78
- ("Malmo", "Sweden"): [55.604981, 13.003822]}
 
79
 
80
- if "Kyiv" in data_to_display["city"]:
81
- cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333]
82
 
83
  data_to_display = data_to_display.set_index("city")
84
 
@@ -123,8 +124,8 @@ st.sidebar.write("-" * 36)
123
 
124
 
125
  model = get_model(project=project,
126
- model_name="gradient_boost_model",
127
- evaluation_metric="f1_score",
128
  sort_metrics_by="max")
129
 
130
  preds = model.predict(X)
@@ -133,6 +134,7 @@ cities = [city_tuple[0] for city_tuple in cities_coords.keys()]
133
 
134
  next_day_date = datetime.today() + timedelta(days=1)
135
  next_day = next_day_date.strftime ('%d/%m/%Y')
 
136
  df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
137
 
138
  st.sidebar.write(df)
 
29
  project = hopsworks.login()
30
  fs = project.get_feature_store()
31
  feature_view = fs.get_feature_view(
32
+ name = 'miami_air_quality_fv',
33
  version = 1
34
  )
35
 
 
39
  st.write(36 * "-")
40
  fancy_header('\n☁️ Getting batch data from Feature Store...')
41
 
42
+ start_date = datetime.now() - timedelta(days=4) # date today minus 2023-1-10
43
  start_time = int(start_date.timestamp()) * 1000
44
 
45
  X = feature_view.get_batch_data(start_time=start_time)
 
73
  data_to_display = data_to_display[["city", "temp", "humidity",
74
  "conditions", "aqi"]]
75
 
76
+ # cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
77
+ # ("Stockholm", "Sweden"): [59.334591, 18.063240],
78
+ # ("Malmo", "Sweden"): [55.604981, 13.003822]}
79
+ cities_coords = {("Miami", "USA"): [25.761681, -80.191788]}
80
 
81
+ # if "Kyiv" in data_to_display["city"]:
82
+ # cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333]
83
 
84
  data_to_display = data_to_display.set_index("city")
85
 
 
124
 
125
 
126
  model = get_model(project=project,
127
+ model_name="xgboost_model",
128
+ evaluation_metric="f1",
129
  sort_metrics_by="max")
130
 
131
  preds = model.predict(X)
 
134
 
135
  next_day_date = datetime.today() + timedelta(days=1)
136
  next_day = next_day_date.strftime ('%d/%m/%Y')
137
+ print('-------', preds, '------', X, '--------')
138
  df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
139
 
140
  st.sidebar.write(df)
requirements.txt CHANGED
@@ -7,4 +7,5 @@ pandas==1.5.2
7
  python-dotenv==0.21.0
8
  requests==2.28.1
9
  streamlit==1.17.0
10
- streamlit_folium==0.10.0
 
 
7
  python-dotenv==0.21.0
8
  requests==2.28.1
9
  streamlit==1.17.0
10
+ streamlit_folium==0.10.0
11
+ xgboost==0.90