Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +53 -139
- requirements.txt +2 -3
app.py
CHANGED
@@ -1,143 +1,57 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import hopsworks
|
3 |
import joblib
|
4 |
-
import
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import folium
|
8 |
-
from streamlit_folium import st_folium, folium_static
|
9 |
-
import json
|
10 |
-
import time
|
11 |
-
from datetime import timedelta, datetime
|
12 |
-
from branca.element import Figure
|
13 |
-
|
14 |
-
from functions import decode_features, get_model
|
15 |
-
|
16 |
-
|
17 |
-
def fancy_header(text, font_size=24):
|
18 |
-
res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>'
|
19 |
-
st.markdown(res, unsafe_allow_html=True )
|
20 |
-
|
21 |
-
|
22 |
-
st.title('⛅️Air Quality Prediction Project🌩')
|
23 |
-
|
24 |
-
progress_bar = st.sidebar.header('⚙️ Working Progress')
|
25 |
-
progress_bar = st.sidebar.progress(0)
|
26 |
-
st.write(36 * "-")
|
27 |
-
fancy_header('\n📡 Connecting to Hopsworks Feature Store...')
|
28 |
-
|
29 |
project = hopsworks.login()
|
30 |
-
fs = project.get_feature_store()
|
31 |
-
feature_view = fs.get_feature_view(
|
32 |
-
name = 'miami_air_quality_fv',
|
33 |
-
version = 1
|
34 |
-
)
|
35 |
-
|
36 |
-
|
37 |
-
st.write("Successfully connected!✔️")
|
38 |
-
progress_bar.progress(20)
|
39 |
-
|
40 |
-
st.write(36 * "-")
|
41 |
-
fancy_header('\n☁️ Getting batch data from Feature Store...')
|
42 |
-
|
43 |
-
start_date = datetime.now() - timedelta(days=4) # date today minus 2023-1-10
|
44 |
-
start_time = int(start_date.timestamp()) * 1000
|
45 |
-
|
46 |
-
X = feature_view.get_batch_data(start_time=start_time)
|
47 |
-
progress_bar.progress(50)
|
48 |
-
|
49 |
-
latest_date_unix = str(X.date.values[0])[:10]
|
50 |
-
latest_date = time.ctime(int(latest_date_unix))
|
51 |
-
|
52 |
-
st.write(f"⏱ Data for {latest_date}")
|
53 |
-
|
54 |
-
X = X.drop(columns=["date"]).fillna(0)
|
55 |
-
|
56 |
-
data_to_display = decode_features(X, feature_view=feature_view)
|
57 |
-
|
58 |
-
progress_bar.progress(60)
|
59 |
-
|
60 |
-
st.write(36 * "-")
|
61 |
-
fancy_header(f"🗺 Processing the map...")
|
62 |
-
|
63 |
-
fig = Figure(width=550,height=350)
|
64 |
-
|
65 |
-
my_map = folium.Map(location=[58, 20], zoom_start=3.71)
|
66 |
-
fig.add_child(my_map)
|
67 |
-
folium.TileLayer('Stamen Terrain').add_to(my_map)
|
68 |
-
folium.TileLayer('Stamen Toner').add_to(my_map)
|
69 |
-
folium.TileLayer('Stamen Water Color').add_to(my_map)
|
70 |
-
folium.TileLayer('cartodbpositron').add_to(my_map)
|
71 |
-
folium.TileLayer('cartodbdark_matter').add_to(my_map)
|
72 |
-
folium.LayerControl().add_to(my_map)
|
73 |
-
|
74 |
-
data_to_display = data_to_display[["city", "temp", "humidity",
|
75 |
-
"conditions", "aqi"]]
|
76 |
-
|
77 |
-
# cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
|
78 |
-
# ("Stockholm", "Sweden"): [59.334591, 18.063240],
|
79 |
-
# ("Malmo", "Sweden"): [55.604981, 13.003822]}
|
80 |
-
cities_coords = {("Miami", "USA"): [25.761681, -80.191788]}
|
81 |
-
|
82 |
-
# if "Kyiv" in data_to_display["city"]:
|
83 |
-
# cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333]
|
84 |
-
|
85 |
-
data_to_display = data_to_display.set_index("city")
|
86 |
-
|
87 |
-
cols_names_dict = {"temp": "Temperature",
|
88 |
-
"humidity": "Humidity",
|
89 |
-
"conditions": "Conditions",
|
90 |
-
"aqi": "AQI"}
|
91 |
-
|
92 |
-
data_to_display = data_to_display.rename(columns=cols_names_dict)
|
93 |
-
|
94 |
-
cols_ = ["Temperature", "Humidity", "AQI"]
|
95 |
-
data_to_display[cols_] = data_to_display[cols_].apply(lambda x: round(x, 1))
|
96 |
-
|
97 |
-
for city, country in cities_coords:
|
98 |
-
text = f"""
|
99 |
-
<h4 style="color:green;">{city}</h4>
|
100 |
-
<h5 style="color":"green">
|
101 |
-
<table style="text-align: right;">
|
102 |
-
<tr>
|
103 |
-
<th>Country:</th>
|
104 |
-
<td><b>{country}</b></td>
|
105 |
-
</tr>
|
106 |
-
"""
|
107 |
-
for column in data_to_display.columns:
|
108 |
-
text += f"""
|
109 |
-
<tr>
|
110 |
-
<th>{column}:</th>
|
111 |
-
<td>{data_to_display.loc[city][column]}</td>
|
112 |
-
</tr>"""
|
113 |
-
text += """</table>
|
114 |
-
</h5>"""
|
115 |
-
|
116 |
-
folium.Marker(
|
117 |
-
cities_coords[(city, country)], popup=text, tooltip=f"<strong>{city}</strong>"
|
118 |
-
).add_to(my_map)
|
119 |
-
|
120 |
-
|
121 |
-
# call to render Folium map in Streamlit
|
122 |
-
folium_static(my_map)
|
123 |
-
progress_bar.progress(80)
|
124 |
-
st.sidebar.write("-" * 36)
|
125 |
-
|
126 |
-
|
127 |
-
model = get_model(project=project,
|
128 |
-
model_name="xgboost_model",
|
129 |
-
evaluation_metric="f1",
|
130 |
-
sort_metrics_by="max")
|
131 |
-
|
132 |
-
preds = model.predict(X)
|
133 |
-
|
134 |
-
cities = [city_tuple[0] for city_tuple in cities_coords.keys()]
|
135 |
-
|
136 |
-
next_day_date = datetime.today() + timedelta(days=1)
|
137 |
-
next_day = next_day_date.strftime ('%d/%m/%Y')
|
138 |
-
print('-------', preds, '------', X, '--------')
|
139 |
-
df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
import hopsworks
|
6 |
import joblib
|
7 |
+
import os
|
8 |
+
from datetime import datetime, timedelta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
project = hopsworks.login()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
mr = project.get_model_registry()
|
12 |
+
model = mr.get_model("xgboost_model", version=1)
|
13 |
+
model_dir = model.download()
|
14 |
+
model = joblib.load(model_dir + "/model.pkl")
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def forecast():
|
20 |
+
|
21 |
+
fs = project.get_feature_store()
|
22 |
+
feature_view = fs.get_feature_view(
|
23 |
+
name = 'miami_air_quality_fv',
|
24 |
+
version = 1
|
25 |
+
)
|
26 |
+
train_data = feature_view.get_training_data(1)[0]
|
27 |
+
train_data = train_data.drop(labels = 'city_y',axis =1)
|
28 |
+
train_data = train_data.rename(columns = {'city_x':'city'})
|
29 |
+
train_data = train_data.sort_values(by="date", ascending=True).reset_index(drop=True)
|
30 |
+
train_data["aqi_next_day"] = train_data.groupby('city')['aqi'].shift(1)
|
31 |
+
|
32 |
+
X = train_data.drop(columns=["date"]).fillna(0)
|
33 |
+
y = X.pop("aqi_next_day")
|
34 |
+
X = X.drop(columns =['city','conditions']).fillna(0)
|
35 |
+
|
36 |
+
today_data = X[1:2]
|
37 |
+
y = model.predict(today_data)
|
38 |
+
|
39 |
+
res = int(y[0])
|
40 |
+
return res
|
41 |
+
|
42 |
+
date_today = datetime.now()
|
43 |
+
day = timedelta(days = 1)
|
44 |
+
date_today = date_today + day
|
45 |
+
date_today = date_today.strftime("%Y-%m-%d")
|
46 |
+
output_label = date_today + " 's air quality is "
|
47 |
+
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn=forecast,
|
50 |
+
title="Air Quality Prediction",
|
51 |
+
description="Get aqi value",
|
52 |
+
allow_flagging="never",
|
53 |
+
inputs=[],
|
54 |
+
outputs=gr.Textbox(label=output_label))
|
55 |
+
|
56 |
+
|
57 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -6,6 +6,5 @@ numpy==1.23.5
|
|
6 |
pandas==1.5.2
|
7 |
python-dotenv==0.21.0
|
8 |
requests==2.28.1
|
9 |
-
|
10 |
-
|
11 |
-
xgboost==0.90
|
|
|
6 |
pandas==1.5.2
|
7 |
python-dotenv==0.21.0
|
8 |
requests==2.28.1
|
9 |
+
xgboost==0.90
|
10 |
+
gradio
|
|