File size: 8,725 Bytes
f8517eb 3c437e4 f8517eb e8fdfbc 651cc8d f3feb5a e8fdfbc b2acfb0 f8517eb e8fdfbc 3c437e4 e8fdfbc 3c437e4 651cc8d 5708f34 b2acfb0 651cc8d 5708f34 651cc8d 9512b53 651cc8d 9512b53 651cc8d 9512b53 651cc8d 9512b53 b2acfb0 9512b53 b2acfb0 9512b53 651cc8d 9512b53 651cc8d 9512b53 651cc8d 9512b53 af9e04c e8fdfbc 3af0361 e8fdfbc 9512b53 e8fdfbc af9e04c 3af0361 e8fdfbc f8517eb 3c437e4 b2acfb0 3c437e4 af9e04c 9512b53 af9e04c e8fdfbc f8517eb e8fdfbc f8517eb e8fdfbc f8517eb e8fdfbc af9e04c e8fdfbc 0bc19f8 e8fdfbc f8517eb e8fdfbc f8517eb af9e04c 9512b53 f3feb5a 8a5ab71 f3feb5a b2acfb0 fa7774c f3feb5a 91d9111 f3feb5a 91d9111 fa7774c 91d9111 fa7774c b2acfb0 91d9111 fa7774c 91d9111 b2acfb0 8a5ab71 f3feb5a b2acfb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import streamlit as st
from stmol import showmol
import py3Dmol
import requests
import biotite.structure.io as bsio
import random
import hashlib
import urllib3
from Bio.Blast import NCBIWWW, NCBIXML
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
import time
import urllib.parse
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
st.set_page_config(layout='wide')
st.sidebar.title('🔮 GenPro2 Protein Generator, Structure Predictor, and Analysis Tool')
st.sidebar.write('GenPro2 is an end-to-end sequence protein generator, structure predictor, analysis tool based [*ESMFold*](https://esmatlas.com/about), the ESM-2 language model, and known proteins.')
def generate_sequence_from_words(words, length):
seed = ' '.join(words).encode('utf-8')
random.seed(hashlib.md5(seed).hexdigest())
amino_acids = "ACDEFGHIKLMNPQRSTVWY"
return ''.join(random.choice(amino_acids) for _ in range(length))
def render_mol(pdb):
pdbview = py3Dmol.view(width=800, height=500)
pdbview.addModel(pdb, 'pdb')
pdbview.setStyle({'cartoon': {'color': 'spectrum'}})
pdbview.setBackgroundColor('white')
pdbview.zoomTo()
pdbview.zoom(2, 800)
pdbview.spin(True)
showmol(pdbview, height=500, width=800)
def perform_blast_analysis(sequence):
st.subheader('Protein Analysis')
with st.spinner("Analyzing generated protein... This may take a several minutes. Stay tuned!"):
progress_bar = st.progress(0)
for i in range(100):
progress_bar.progress(i + 1)
time.sleep(0.1) # Simulate analysis time
try:
record = SeqRecord(Seq(sequence), id='random_protein')
result_handle = NCBIWWW.qblast("blastp", "swissprot", record.seq)
blast_record = NCBIXML.read(result_handle)
if blast_record.alignments:
alignment = blast_record.alignments[0] # Get the top hit
hsp = alignment.hsps[0] # Get the first (best) HSP
# Extract protein name and organism
title_parts = alignment.title.split('|')
protein_name = title_parts[-1].strip()
organism = title_parts[-2].split('OS=')[-1].split('OX=')[0].strip()
# Calculate identity percentage
identity_percentage = (hsp.identities / alignment.length) * 100
st.write(f"**Top Match:** {protein_name}")
st.write(f"**Organism Code:** {organism}")
st.write(f"**Sequence Identity:** {identity_percentage:.2f}%")
# Fetch protein function (if available)
if hasattr(alignment, 'description') and alignment.description:
st.write(f"**Potential Function:** {alignment.description}")
st.write("No significant matches found. This might be a unique protein sequence!")
except Exception as e:
st.error(f"An error occurred during protein analysis: {str(e)}")
st.write("Please try again later or contact support if the issue persists.")
def update(sequence, word1, word2, word3, sequence_length):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
}
try:
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/',
headers=headers,
data=sequence,
verify=False,
timeout=300)
response.raise_for_status()
pdb_string = response.content.decode('utf-8')
with open('predicted.pdb', 'w') as f:
f.write(pdb_string)
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
b_value = round(struct.b_factor.mean(), 2)
st.session_state.structure_info = {
'pdb_string': pdb_string,
'b_value': b_value,
'word1': word1,
'word2': word2,
'word3': word3,
'sequence_length': sequence_length
}
st.session_state.show_analyze_button = True
except requests.exceptions.RequestException as e:
st.error(f"An error occurred while calling the API: {str(e)}")
st.write("Please try again later or contact support if the issue persists.")
def share_on_twitter(word1, word2, word3, length, plddt):
tweet_text = f"I just generated a new protein using #GenPro2 from the seed-words '{word1}', '{word2}', and '{word3}' + sequence length {length}! It's Predictive Protein Score is: {plddt}%. -- made by @WandAI"
tweet_url = f"https://twitter.com/intent/tweet?text={urllib.parse.quote(tweet_text)}"
return tweet_url
# Initialize session state variables
if 'sequence' not in st.session_state:
st.session_state.sequence = None
if 'show_analyze_button' not in st.session_state:
st.session_state.show_analyze_button = False
if 'structure_info' not in st.session_state:
st.session_state.structure_info = None
st.title("Word-Seeded Protein Sequence Generator and Structure Predictor")
st.sidebar.subheader("Generate Sequence from Words")
word1 = st.sidebar.text_input("Word 1")
word2 = st.sidebar.text_input("Word 2")
word3 = st.sidebar.text_input("Word 3")
sequence_length = st.sidebar.number_input("Sequence Length", min_value=50, max_value=400, value=100, step=10)
if st.sidebar.button('Generate and Predict'):
if word1 and word2 and word3:
sequence = generate_sequence_from_words([word1, word2, word3], sequence_length)
st.session_state.sequence = sequence
st.sidebar.text_area("Generated Sequence", sequence, height=100)
st.sidebar.info("Note: The same words and sequence length will always produce the same sequence.")
with st.spinner("Predicting protein structure... This may take a few minutes."):
update(sequence, word1, word2, word3, sequence_length)
else:
st.sidebar.warning("Please enter all three words to generate a sequence.")
# Display structure information if available
if st.session_state.structure_info:
info = st.session_state.structure_info
st.subheader(f'Predicted protein structure using seed: {info["word1"]}, {info["word2"]}, and {info["word3"]} + length {info["sequence_length"]}')
render_mol(info['pdb_string'])
st.subheader('plDDT Confidence Score')
st.write('plDDT is a bench mark for scoring the confidence level in protein folding prediction based on a scale from 0-100%. 70% or more is really good!')
plddt_score = int(info["b_value"] * 100)
st.info(f'Average plDDT: {plddt_score}%')
st.subheader("Share your unique protein on X(Twitter)")
st.markdown("""
<div style='background-color: #e6f2ff; padding: 10px; border-radius: 5px; font-size: 0.8em;'>
<ol>
<li>Take a screenshot of the protein structure above.</li>
<li>Click the 'Share on X' button below to open a pre-filled post with your protein seed-words and score.</li>
<li>Be sure to attach the screenshot of your protein before your post!</li>
</ol>
</div>
""", unsafe_allow_html=True)
tweet_url = share_on_twitter(info["word1"], info["word2"], info["word3"], info["sequence_length"], plddt_score)
st.markdown(f"[Share Results]({tweet_url})")
st.markdown("""
## What to do next:
If you find an interesting protein from the sequence folding, you can explore it even further:
1. Click the 'analyze protein' button to use the [BLAST](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) tool to see what you protein might do. The sequence identity will show how close of a match your protein is the the best match. *Note this can take several minutes
2. Download your protein data and visit the [Protein Data Bank (PDB)](https://www.rcsb.org/) to match your protein structure against known protein structures.
3. If you think you've discovered a new and useful protein message us!
**Remember, this folding is based on randomly generated sequences. Interpret the results with caution.
Enjoy exploring the world of protein sequences!
""")
col1, col2 = st.columns(2)
with col1:
if st.button('Analyze Protein'):
perform_blast_analysis(st.session_state.sequence)
with col2:
st.download_button(
label="Download PDB",
data=info['pdb_string'],
file_name='predicted.pdb',
mime='text/plain',
)
|