PS1-Graphics / app.py
Vo1dAbyss's picture
Update app.py
52fc291 verified
raw
history blame
5.17 kB
import torch
from diffusers import StableDiffusionXLPipeline
import numpy as np
import gradio as gr
import random
from compel import Compel, ReturnedEmbeddingsType
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = pipe.to(device)
else:
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = pipe.to(device)
pipe.safety_checker = None
pipe.load_lora_weights("artificialguybr/ps1redmond-ps1-game-graphics-lora-for-sdxl", weight_name="PS1Redmond-PS1Game-Playstation1Graphics.safetensors")
lora_activation_words = "playstation 1 graphics, PS1 Game, "
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=neg_conditioning,
negative_pooled_prompt_embeds=neg_pooled,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
cross_attention_kwargs={"scale": lora_weight}
).images[0]
return image
def get_embeds(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight):
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
prompt = lora_activation_words + prompt
conditioning, pooled = compel(prompt)
neg_conditioning, neg_pooled = compel(negative_prompt)
image = infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight)
return image
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {device.upper()}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
with gr.Row():
lora_weight = gr.Slider(
label="LoRA weight",
minimum=0.0,
maximum=5.0,
step=0.01,
value=1,
)
run_button.click(
fn = get_embeds,
inputs = [prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight],
outputs = [result]
)
demo.launch(debug=True)