Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import StableDiffusionXLPipeline | |
| import numpy as np | |
| import gradio as gr | |
| import random | |
| from compel import Compel, ReturnedEmbeddingsType | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if torch.cuda.is_available(): | |
| torch.cuda.max_memory_allocated(device=device) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| else: | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| pipe.safety_checker = None | |
| pipe.load_lora_weights("artificialguybr/ps1redmond-ps1-game-graphics-lora-for-sdxl", weight_name="PS1Redmond-PS1Game-Playstation1Graphics.safetensors") | |
| lora_activation_words = "playstation 1 graphics, PS1 Game, " | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt_embeds=conditioning, | |
| pooled_prompt_embeds=pooled, | |
| negative_prompt_embeds=neg_conditioning, | |
| negative_pooled_prompt_embeds=neg_pooled, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| cross_attention_kwargs={"scale": lora_weight} | |
| ).images[0] | |
| return image | |
| def get_embeds(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight): | |
| compel = Compel( | |
| tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , | |
| text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True] | |
| ) | |
| prompt = lora_activation_words + prompt | |
| conditioning, pooled = compel(prompt) | |
| neg_conditioning, neg_pooled = compel(negative_prompt) | |
| image = infer(conditioning, pooled, neg_conditioning, neg_pooled, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight) | |
| return image | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image Gradio Template | |
| Currently running on {device.upper()}. | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=7.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=30, | |
| ) | |
| with gr.Row(): | |
| lora_weight = gr.Slider( | |
| label="LoRA weight", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.01, | |
| value=1, | |
| ) | |
| run_button.click( | |
| fn = get_embeds, | |
| inputs = [prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed, lora_weight], | |
| outputs = [result] | |
| ) | |
| demo.launch(debug=True) |