Spaces:
Sleeping
Sleeping
Vitomir Jovanović
commited on
Commit
·
e9fda99
1
Parent(s):
b2667d5
New Streamlit code for Hugging Face deployment
Browse files
app.py
CHANGED
|
@@ -1,34 +1,100 @@
|
|
| 1 |
-
# streamlit_app.py
|
| 2 |
import streamlit as st
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
if
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
else:
|
| 34 |
-
st.error(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from models.vectorizer import Vectorizer
|
| 3 |
+
from models.prompt_search_engine import PromptSearchEngine
|
| 4 |
+
from models.data_reader import load_prompts_from_jsonl
|
| 5 |
+
from models.Query import Query, SimilarPrompt, SearchResponse, PromptVector, VectorResponse
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Path to your prompts data (you need to upload this file to your Hugging Face space)
|
| 10 |
+
prompt_path = "models/prompts_data.jsonl" # Update this to the correct path in your space
|
| 11 |
+
|
| 12 |
+
# Initialize search engine and model
|
| 13 |
+
prompts = load_prompts_from_jsonl(prompt_path)
|
| 14 |
+
search_engine = PromptSearchEngine()
|
| 15 |
+
search_engine.add_prompts_to_vector_database(prompts)
|
| 16 |
+
|
| 17 |
+
# Streamlit App Interface
|
| 18 |
+
st.title("Prompt Search Engine")
|
| 19 |
+
st.write("Search for similar prompts using the local search engine.")
|
| 20 |
+
|
| 21 |
+
# Input for the user's prompt
|
| 22 |
+
query_input = st.text_input("Enter your prompt:")
|
| 23 |
+
|
| 24 |
+
# Number of similar prompts to retrieve (k)
|
| 25 |
+
k = st.number_input("Number of similar prompts to retrieve:", min_value=1, max_value=10, value=3)
|
| 26 |
+
|
| 27 |
+
# Button to trigger search
|
| 28 |
+
if st.button("Search Prompts"):
|
| 29 |
+
if query_input:
|
| 30 |
+
query = Query(prompt=query_input)
|
| 31 |
+
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k)
|
| 32 |
+
|
| 33 |
+
# Format and display search results
|
| 34 |
+
response = [
|
| 35 |
+
SimilarPrompt(prompt=prompt, distance=float(distance))
|
| 36 |
+
for prompt, distance in zip(similar_prompts, distances)
|
| 37 |
+
]
|
| 38 |
+
st.write("Search Results:")
|
| 39 |
+
for result in response:
|
| 40 |
+
st.write(f"Prompt: {result.prompt}, Distance: {result.distance}")
|
| 41 |
+
else:
|
| 42 |
+
st.error("Please enter a prompt.")
|
| 43 |
+
|
| 44 |
+
# Additional functionality for vector similarity
|
| 45 |
+
st.write("---")
|
| 46 |
+
st.write("### Vector Similarities")
|
| 47 |
+
|
| 48 |
+
if st.button("Retrieve All Vector Similarities"):
|
| 49 |
+
if query_input:
|
| 50 |
+
query = Query(prompt=query_input)
|
| 51 |
+
query_embedding = search_engine.model.encode([query.prompt]) # Encode the prompt to a vector
|
| 52 |
+
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
|
| 53 |
+
|
| 54 |
+
# Format and display vector similarities
|
| 55 |
+
response = [
|
| 56 |
+
PromptVector(vector=index, distance=float(distance))
|
| 57 |
+
for index, distance in enumerate(all_similarities)
|
| 58 |
+
]
|
| 59 |
+
st.write("Vector Similarities:")
|
| 60 |
+
for result in response:
|
| 61 |
+
st.write(f"Vector Index: {result.vector}, Distance: {result.distance}")
|
| 62 |
else:
|
| 63 |
+
st.error("Please enter a prompt.")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# # streamlit_app.py
|
| 68 |
+
# import streamlit as st
|
| 69 |
+
# import requests
|
| 70 |
+
|
| 71 |
+
# # Streamlit app title
|
| 72 |
+
# st.title("Top K Search with Vector DataBase")
|
| 73 |
+
|
| 74 |
+
# # FastAPI endpoint URL
|
| 75 |
+
# # url = "http://localhost:8084/search/"
|
| 76 |
+
# url = "https://huggingface.co/search/"
|
| 77 |
+
|
| 78 |
+
# # Input fields in Streamlit
|
| 79 |
+
# id = st.text_input("Enter ID:", value="1")
|
| 80 |
+
# prompt = st.text_input("Enter your prompt:")
|
| 81 |
+
# k = st.number_input("Top K results:", min_value=1, max_value=100, value=3)
|
| 82 |
+
|
| 83 |
+
# # Trigger the search when the button is clicked
|
| 84 |
+
# if st.button("Search"):
|
| 85 |
+
# # Construct the request payload
|
| 86 |
+
# payload = {
|
| 87 |
+
# "id": id,
|
| 88 |
+
# "prompt": prompt,
|
| 89 |
+
# "k": k
|
| 90 |
+
# }
|
| 91 |
+
|
| 92 |
+
# # Make the POST request
|
| 93 |
+
# response = requests.post(url, json=payload)
|
| 94 |
+
|
| 95 |
+
# # Handle the response
|
| 96 |
+
# if response.status_code == 200:
|
| 97 |
+
# results = response.json()
|
| 98 |
+
# st.write(results)
|
| 99 |
+
# else:
|
| 100 |
+
# st.error(f"Error: {response.status_code} - {response.text}")
|