""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import os import json import random from PIL import Image from minigpt4.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset from collections import OrderedDict class __DisplMixin: def displ_item(self, index): sample, ann = self.__getitem__(index), self.annotation[index] return OrderedDict( { "file": ann["image"], "question": ann["question"], "question_id": ann["question_id"], "answers": "; ".join(ann["answer"]), "image": sample["image"], } ) class COCOVQADataset(VQADataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.instruction_pool =[ "[vqa] {}", "[vqa] Based on the image, respond to this question with a short answer: {}" ] exist_annotation = [] for ann in self.annotation: image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1]) if os.path.exists(image_path): exist_annotation.append(ann) self.annotation = exist_annotation def get_data(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) question_id = ann["question_id"] answer_weight = {} for answer in ann["answer"]: if answer in answer_weight.keys(): answer_weight[answer] += 1 / len(ann["answer"]) else: answer_weight[answer] = 1 / len(ann["answer"]) answers = list(answer_weight.keys()) weights = list(answer_weight.values()) answer = random.choices(answers, weights=weights, k=1)[0] # random sample an answer according to weights if "unk" in answer: print("cocovqa", answer) return { "image": image, "question": question, "question_id": question_id, "answer": answer, } def __getitem__(self, index): data = self.get_data(index) instruction = random.choice(self.instruction_pool).format(data['question']) instruction = " {} ".format(instruction) return { "image": data['image'], "question_id": data["question_id"], "instruction_input": instruction, "answer": self.text_processor(data['answer']), } class COCOVQGDataset(COCOVQADataset): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): super().__init__(vis_processor, text_processor, vis_root, ann_paths) self.instruction_pool = [ 'Given the image, generate a question whose answer is: {}', 'Based on the image, provide a question with the answer: {}', 'Given the visual representation, create a question for which the answer is "{}"', 'From the image provided, craft a question that leads to the reply: {}', 'Considering the picture, come up with a question where the answer is: {}', 'Taking the image into account, generate an question that has the answer: {}' ] def __getitem__(self, index): data = self.get_data(index) instruction = random.choice(self.instruction_pool).format(data['answer']) instruction = " {}".format(instruction) return { "image": data['image'], "question_id": data["question_id"], "instruction_input": instruction, "answer": data['question'], } class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin): def __init__(self, vis_processor, text_processor, vis_root, ann_paths): """ vis_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file """ self.instruction_pool = [ # '{}', # 'Question: {}', # '{} A short answer to the question is', # 'Q: {} A:', 'Question: {} Short answer:', # 'Given the image, answer the following question with no more than three words. {}', # 'Based on the image, respond to this question with a short answer: {}.', # 'Use the provided image to answer the question: {} Provide your answer as short as possible.', # 'What is the answer to the following question? "{}"', # 'The question "{}" can be answered using the image. A short answer is' ] # print('vis_root', vis_root) self.vis_root = vis_root self.annotation = json.load(open(ann_paths[0])) answer_list_path = ann_paths[1] if os.path.exists(answer_list_path): self.answer_list = json.load(open(answer_list_path)) else: self.answer_list = None try: self.coco_fmt_qust_file = ann_paths[2] self.coco_fmt_anno_file = ann_paths[3] except IndexError: self.coco_fmt_qust_file = None self.coco_fmt_anno_file = None self.vis_processor = vis_processor self.text_processor = text_processor self._add_instance_ids() def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.vis_root, ann["image"]) image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) question = self.text_processor(ann["question"]) instruction = random.choice(self.instruction_pool).format(question) instruction = " {} ".format(instruction) return { "image": image, 'image_path': image_path, "question": question, "question_id": ann["question_id"], "instruction_input": instruction, "instance_id": ann["instance_id"], }