Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import pathlib | |
import json | |
from tqdm import tqdm | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers.util import cos_sim | |
from load_aokvqa import load_aokvqa | |
def map_to_choices(dataset, predictions, device='cpu'): | |
if isinstance(dataset, list): | |
dataset = { dataset[i]['question_id'] : dataset[i] for i in range(len(dataset)) } | |
if all([p in dataset[q]['choices'] for q, p in predictions.items()]): | |
return predictions | |
model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d') | |
model.to(device) | |
for q in tqdm(predictions.keys()): | |
choices = dataset[q]['choices'] | |
if predictions[q] not in choices: | |
choice_embeddings = model.encode([predictions[q]] + choices, convert_to_tensor=True) | |
a_idx = cos_sim(choice_embeddings[0], choice_embeddings[1:]).argmax().item() | |
predictions[q] = choices[a_idx] | |
return predictions | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir') | |
parser.add_argument('--split', type=str, choices=['train', 'val', 'test'], required=True) | |
parser.add_argument('--pred', type=argparse.FileType('r'), required=True, dest='prediction_file') | |
parser.add_argument('--out', type=argparse.FileType('w'), required=True, dest='output_file') | |
args = parser.parse_args() | |
dataset = load_aokvqa(args.aokvqa_dir, args.split) | |
predictions = json.load(args.prediction_file) | |
predictions = map_to_choices(dataset, predictions) | |
json.dump(predictions, args.output_file) | |