Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import pathlib | |
import json | |
from load_aokvqa import load_aokvqa | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir') | |
parser.add_argument('--split', type=str, choices=['train', 'val', 'test'], required=True) | |
parser.add_argument('--mc', type=argparse.FileType('r'), dest='mc_pred_file') | |
parser.add_argument('--da', type=argparse.FileType('r'), dest='da_pred_file') | |
parser.add_argument('--out', type=argparse.FileType('w'), dest='output_file') | |
args = parser.parse_args() | |
assert args.mc_pred_file or args.da_pred_file | |
dataset = load_aokvqa(args.aokvqa_dir, args.split) | |
mc_preds = json.load(args.mc_pred_file) if args.mc_pred_file else None | |
da_preds = json.load(args.da_pred_file) if args.da_pred_file else None | |
predictions = {} | |
for d in dataset: | |
q = d['question_id'] | |
predictions[q] = {} | |
if mc_preds and q in mc_preds.keys(): | |
predictions[q]['multiple_choice'] = mc_preds[q] | |
if da_preds and q in da_preds.keys(): | |
predictions[q]['direct_answer'] = da_preds[q] | |
json.dump(predictions, args.output_file) | |