Spaces:
Build error
Build error
File size: 8,675 Bytes
8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 913f79b 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 913f79b 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 8e839af 02273e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
import pandas as pd
from simple_salesforce import Salesforce
import io
from datetime import datetime
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables to store connection
sf_connection = None
available_objects = []
def connect_to_salesforce(username, password, security_token, sandbox):
"""Connect to Salesforce"""
global sf_connection, available_objects
try:
domain = 'test' if sandbox else None
sf_connection = Salesforce(
username=username,
password=password,
security_token=security_token,
domain=domain
)
# Test connection and get objects
common_objects = ['Account', 'Contact', 'Lead', 'Opportunity', 'Case']
available_objects = []
for obj_name in common_objects:
try:
obj = getattr(sf_connection, obj_name)
obj.describe()
available_objects.append(obj_name)
except:
continue
if not available_objects:
available_objects = ['Account', 'Contact', 'Lead']
return f"β
Successfully connected to Salesforce as {username}\nAvailable objects: {', '.join(available_objects)}"
except Exception as e:
sf_connection = None
available_objects = []
error_msg = str(e)
if "INVALID_LOGIN" in error_msg:
return "β Invalid credentials. Please check your username, password, and security token."
elif "API_DISABLED_FOR_ORG" in error_msg:
return "β API access is disabled for your organization. Please contact your Salesforce admin."
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
return "β Security token required. Please append your security token to your password."
else:
return f"β Connection failed: {error_msg}"
def upload_data_to_salesforce(file, object_name, operation):
"""Upload data to Salesforce"""
global sf_connection
if not sf_connection:
return "β Please connect to Salesforce first", None
if not file or not object_name:
return "β Please select a file and object", None
try:
# Read the uploaded file
if file.name.endswith('.csv'):
df = pd.read_csv(file.name)
elif file.name.endswith(('.xlsx', '.xls')):
df = pd.read_excel(file.name)
else:
return "β Please upload a CSV or Excel file", None
if df.empty:
return "β The uploaded file is empty", None
# Get Salesforce object
sf_object = getattr(sf_connection, object_name)
# Prepare data for upload
records = df.to_dict('records')
# Clean data - remove NaN values
cleaned_records = []
for record in records:
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
cleaned_records.append(cleaned_record)
# Perform operation
if operation == "Insert":
result = sf_object.bulk.insert(cleaned_records)
elif operation == "Update":
result = sf_object.bulk.update(cleaned_records)
else: # Upsert
return "β Upsert operation requires additional configuration", None
# Process results
success_count = sum(1 for r in result if r.get('success'))
error_count = len(result) - success_count
summary = f"β
Operation completed!\n"
summary += f"π Total records: {len(records)}\n"
summary += f"β
Successful: {success_count}\n"
summary += f"β Failed: {error_count}\n"
# Create results file
results_df = pd.DataFrame(result)
results_file = f"salesforce_upload_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
results_df.to_csv(results_file, index=False)
return summary, results_file
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return f"β Error: {str(e)}", None
def export_data_from_salesforce(object_name, record_limit):
"""Export data from Salesforce"""
global sf_connection
if not sf_connection:
return "β Please connect to Salesforce first", None
if not object_name:
return "β Please select an object", None
try:
# Get object metadata to find some fields
obj = getattr(sf_connection, object_name)
metadata = obj.describe()
# Get first 10 fields
fields = [field['name'] for field in metadata['fields'][:10]]
fields_str = ', '.join(fields)
# Build and execute query
query = f"SELECT {fields_str} FROM {object_name} LIMIT {record_limit}"
result = sf_connection.query_all(query)
records = result['records']
if not records:
return "β No records found", None
# Convert to DataFrame and clean
df = pd.DataFrame(records)
if 'attributes' in df.columns:
df = df.drop('attributes', axis=1)
# Create export file
export_file = f"salesforce_export_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(export_file, index=False)
summary = f"β
Export completed!\n"
summary += f"π Records exported: {len(records)}\n"
summary += f"π Fields: {', '.join(fields)}\n"
return summary, export_file
except Exception as e:
logger.error(f"Export error: {str(e)}")
return f"β Error: {str(e)}", None
# Create the Gradio interface
with gr.Blocks(title="Salesforce Data Loader", theme=gr.themes.Default()) as demo:
gr.Markdown("""
# π Salesforce Data Loader
A simple tool to upload and download data from Salesforce.
""")
with gr.Tab("π Connect"):
gr.Markdown("### Connect to Salesforce")
username = gr.Textbox(label="Username", placeholder="[email protected]")
password = gr.Textbox(label="Password", type="password")
security_token = gr.Textbox(label="Security Token", type="password")
sandbox = gr.Checkbox(label="Sandbox Environment")
connect_btn = gr.Button("π Connect", variant="primary")
connection_status = gr.Textbox(label="Connection Status", interactive=False)
connect_btn.click(
fn=connect_to_salesforce,
inputs=[username, password, security_token, sandbox],
outputs=[connection_status]
)
with gr.Tab("π€ Upload"):
gr.Markdown("### Upload CSV/Excel data to Salesforce")
file_upload = gr.File(label="Upload CSV or Excel file")
upload_object = gr.Dropdown(
label="Salesforce Object",
choices=["Account", "Contact", "Lead", "Opportunity", "Case"],
value="Contact"
)
upload_operation = gr.Dropdown(
label="Operation",
choices=["Insert", "Update"],
value="Insert"
)
upload_btn = gr.Button("π€ Upload Data", variant="primary")
upload_results = gr.Textbox(label="Upload Results", interactive=False)
download_results = gr.File(label="Download Results")
upload_btn.click(
fn=upload_data_to_salesforce,
inputs=[file_upload, upload_object, upload_operation],
outputs=[upload_results, download_results]
)
with gr.Tab("π₯ Export"):
gr.Markdown("### Export data from Salesforce")
export_object = gr.Dropdown(
label="Salesforce Object",
choices=["Account", "Contact", "Lead", "Opportunity", "Case"],
value="Account"
)
export_limit = gr.Slider(
label="Record Limit",
minimum=100,
maximum=10000,
value=1000,
step=100
)
export_btn = gr.Button("π₯ Export Data", variant="primary")
export_results = gr.Textbox(label="Export Results", interactive=False)
download_export = gr.File(label="Download Export")
export_btn.click(
fn=export_data_from_salesforce,
inputs=[export_object, export_limit],
outputs=[export_results, download_export]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |