File size: 14,639 Bytes
8e839af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import pandas as pd
import numpy as np
from simple_salesforce import Salesforce
import io
import traceback
from datetime import datetime
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SalesforceDataLoader:
    def __init__(self):
        self.sf = None
        self.connected = False
        self.available_objects = []
        
    def connect_to_salesforce(self, username, password, security_token, sandbox=False):
        """Connect to Salesforce using credentials"""
        try:
            domain = 'test' if sandbox else None
            self.sf = Salesforce(
                username=username,
                password=password,
                security_token=security_token,
                domain=domain
            )
            self.connected = True
            
            # Get available objects
            self._get_available_objects()
            
            return f"βœ… Successfully connected to Salesforce as {username}", gr.update(visible=True), gr.update(choices=self.available_objects, value=None)
            
        except Exception as e:
            logger.error(f"Connection failed: {str(e)}")
            self.connected = False
            return f"❌ Connection failed: {str(e)}", gr.update(visible=False), gr.update(choices=[], value=None)
    
    def _get_available_objects(self):
        """Get list of available Salesforce objects"""
        try:
            # Get commonly used objects
            common_objects = ['Account', 'Contact', 'Lead', 'Opportunity', 'Case', 'Campaign', 'User', 'Product2']
            self.available_objects = []
            
            for obj_name in common_objects:
                try:
                    # Test if object exists and is accessible
                    getattr(self.sf, obj_name).describe()
                    self.available_objects.append(obj_name)
                except:
                    continue
                    
        except Exception as e:
            logger.error(f"Error getting objects: {str(e)}")
            self.available_objects = ['Account', 'Contact', 'Lead']  # Fallback
    
    def get_object_fields(self, object_name):
        """Get fields for selected Salesforce object"""
        if not self.connected or not object_name:
            return gr.update(choices=[], value=None), ""
            
        try:
            obj = getattr(self.sf, object_name)
            metadata = obj.describe()
            
            fields = []
            field_info = []
            
            for field in metadata['fields']:
                if field['createable'] or field['updateable']:
                    field_name = field['name']
                    field_type = field['type']
                    required = "Required" if not field['nillable'] and not field['defaultedOnCreate'] else "Optional"
                    
                    fields.append(field_name)
                    field_info.append(f"**{field_name}** ({field_type}) - {required}")
            
            field_info_text = "\n".join(field_info[:20])  # Show first 20 fields
            if len(field_info) > 20:
                field_info_text += f"\n... and {len(field_info) - 20} more fields"
                
            return gr.update(choices=fields, value=None), field_info_text
            
        except Exception as e:
            logger.error(f"Error getting fields: {str(e)}")
            return gr.update(choices=[], value=None), f"Error: {str(e)}"
    
    def upload_data_to_salesforce(self, file, object_name, operation, external_id_field=None):
        """Upload data to Salesforce"""
        if not self.connected:
            return "❌ Please connect to Salesforce first", None
            
        if not file or not object_name:
            return "❌ Please select a file and object", None
            
        try:
            # Read the uploaded file
            if file.name.endswith('.csv'):
                df = pd.read_csv(file.name)
            elif file.name.endswith(('.xlsx', '.xls')):
                df = pd.read_excel(file.name)
            else:
                return "❌ Please upload a CSV or Excel file", None
            
            if df.empty:
                return "❌ The uploaded file is empty", None
            
            # Get Salesforce object
            sf_object = getattr(self.sf, object_name)
            
            # Prepare data for upload
            records = df.to_dict('records')
            
            # Clean data - remove NaN values
            for record in records:
                record = {k: v for k, v in record.items() if pd.notna(v)}
            
            results = []
            errors = []
            
            # Perform bulk operation
            if operation == "Insert":
                try:
                    result = sf_object.bulk.insert(records)
                    results = result
                except Exception as e:
                    return f"❌ Bulk insert failed: {str(e)}", None
                    
            elif operation == "Update":
                try:
                    result = sf_object.bulk.update(records)
                    results = result
                except Exception as e:
                    return f"❌ Bulk update failed: {str(e)}", None
                    
            elif operation == "Upsert":
                if not external_id_field:
                    return "❌ External ID field is required for upsert operation", None
                try:
                    result = sf_object.bulk.upsert(records, external_id_field)
                    results = result
                except Exception as e:
                    return f"❌ Bulk upsert failed: {str(e)}", None
            
            # Process results
            success_count = 0
            error_count = 0
            
            for result in results:
                if result.get('success'):
                    success_count += 1
                else:
                    error_count += 1
                    errors.append(result.get('errors', []))
            
            # Create results summary
            summary = f"βœ… Operation completed!\n"
            summary += f"πŸ“Š Total records: {len(records)}\n"
            summary += f"βœ… Successful: {success_count}\n"
            summary += f"❌ Failed: {error_count}\n"
            
            if errors:
                summary += f"\n**First few errors:**\n"
                for i, error in enumerate(errors[:5]):
                    summary += f"{i+1}. {error}\n"
            
            # Create downloadable results file
            results_df = pd.DataFrame(results)
            results_csv = results_df.to_csv(index=False)
            results_file = f"salesforce_upload_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
            
            with open(results_file, 'w') as f:
                f.write(results_csv)
            
            return summary, results_file
            
        except Exception as e:
            logger.error(f"Upload error: {str(e)}")
            logger.error(traceback.format_exc())
            return f"❌ Error: {str(e)}", None
    
    def export_data_from_salesforce(self, object_name, fields, record_limit=1000):
        """Export data from Salesforce"""
        if not self.connected:
            return "❌ Please connect to Salesforce first", None
            
        if not object_name:
            return "❌ Please select an object", None
            
        try:
            # Build SOQL query
            if not fields:
                # Get some default fields
                obj = getattr(self.sf, object_name)
                metadata = obj.describe()
                fields = [field['name'] for field in metadata['fields'][:10]]  # First 10 fields
            
            fields_str = ', '.join(fields)
            query = f"SELECT {fields_str} FROM {object_name} LIMIT {record_limit}"
            
            # Execute query
            result = self.sf.query_all(query)
            records = result['records']
            
            if not records:
                return "❌ No records found", None
            
            # Convert to DataFrame
            df = pd.DataFrame(records)
            
            # Remove Salesforce metadata columns
            if 'attributes' in df.columns:
                df = df.drop('attributes', axis=1)
            
            # Create downloadable file
            export_file = f"salesforce_export_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
            df.to_csv(export_file, index=False)
            
            summary = f"βœ… Export completed!\n"
            summary += f"πŸ“Š Records exported: {len(records)}\n"
            summary += f"πŸ“‹ Fields: {', '.join(fields)}\n"
            summary += f"πŸ“ File: {export_file}"
            
            return summary, export_file
            
        except Exception as e:
            logger.error(f"Export error: {str(e)}")
            return f"❌ Error: {str(e)}", None

# Initialize the Salesforce Data Loader
sf_loader = SalesforceDataLoader()

# Create the Gradio interface
def create_interface():
    with gr.Blocks(title="Salesforce Data Loader", theme=gr.themes.Soft()) as interface:
        gr.Markdown("""
        # πŸš€ Salesforce Data Loader
        
        A powerful tool to upload and download data from Salesforce. Connect with your credentials and start managing your data!
        """)
        
        with gr.Tab("πŸ” Connection"):
            gr.Markdown("### Connect to Salesforce")
            with gr.Row():
                with gr.Column():
                    username = gr.Textbox(label="Username", placeholder="[email protected]")
                    password = gr.Textbox(label="Password", type="password")
                    security_token = gr.Textbox(label="Security Token", type="password", 
                                              info="Get this from Salesforce Setup β†’ Personal Information β†’ Reset Security Token")
                with gr.Column():
                    sandbox = gr.Checkbox(label="Sandbox Environment", info="Check if connecting to a sandbox")
                    connect_btn = gr.Button("πŸ”— Connect to Salesforce", variant="primary")
            
            connection_status = gr.Markdown("")
            
        with gr.Tab("πŸ“€ Upload Data", visible=False) as upload_tab:
            gr.Markdown("### Upload CSV/Excel data to Salesforce")
            
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(label="Upload CSV or Excel file", file_types=[".csv", ".xlsx", ".xls"])
                    object_dropdown = gr.Dropdown(label="Select Salesforce Object", choices=[])
                    operation_dropdown = gr.Dropdown(
                        label="Operation Type", 
                        choices=["Insert", "Update", "Upsert"],
                        value="Insert"
                    )
                    external_id_field = gr.Dropdown(label="External ID Field (for Upsert)", choices=[], visible=False)
                    
                with gr.Column():
                    object_fields_info = gr.Markdown("Select an object to see available fields")
            
            upload_btn = gr.Button("πŸ“€ Upload Data", variant="primary")
            upload_results = gr.Markdown("")
            download_results = gr.File(label="Download Results", visible=False)
            
        with gr.Tab("πŸ“₯ Export Data", visible=False) as export_tab:
            gr.Markdown("### Export data from Salesforce")
            
            with gr.Row():
                with gr.Column():
                    export_object = gr.Dropdown(label="Select Object to Export", choices=[])
                    export_fields = gr.CheckboxGroup(label="Select Fields to Export", choices=[])
                    record_limit = gr.Slider(minimum=100, maximum=10000, value=1000, step=100, 
                                           label="Record Limit")
                    
                with gr.Column():
                    export_fields_info = gr.Markdown("Select an object to see available fields")
            
            export_btn = gr.Button("πŸ“₯ Export Data", variant="primary")
            export_results = gr.Markdown("")
            download_export = gr.File(label="Download Export", visible=False)
        
        # Event handlers
        connect_btn.click(
            fn=sf_loader.connect_to_salesforce,
            inputs=[username, password, security_token, sandbox],
            outputs=[connection_status, upload_tab, object_dropdown]
        )
        
        # Update export object dropdown when connection is made
        connect_btn.click(
            fn=lambda status, visible, choices: gr.update(choices=choices),
            inputs=[connection_status, upload_tab, object_dropdown],
            outputs=[export_object]
        )
        
        object_dropdown.change(
            fn=sf_loader.get_object_fields,
            inputs=[object_dropdown],
            outputs=[external_id_field, object_fields_info]
        )
        
        export_object.change(
            fn=sf_loader.get_object_fields,
            inputs=[export_object],
            outputs=[export_fields, export_fields_info]
        )
        
        operation_dropdown.change(
            fn=lambda op: gr.update(visible=(op == "Upsert")),
            inputs=[operation_dropdown],
            outputs=[external_id_field]
        )
        
        upload_btn.click(
            fn=sf_loader.upload_data_to_salesforce,
            inputs=[file_upload, object_dropdown, operation_dropdown, external_id_field],
            outputs=[upload_results, download_results]
        )
        
        download_results.change(
            fn=lambda file: gr.update(visible=file is not None),
            inputs=[download_results],
            outputs=[download_results]
        )
        
        export_btn.click(
            fn=sf_loader.export_data_from_salesforce,
            inputs=[export_object, export_fields, record_limit],
            outputs=[export_results, download_export]
        )
        
        download_export.change(
            fn=lambda file: gr.update(visible=file is not None),
            inputs=[download_export],
            outputs=[download_export]
        )
    
    return interface

# Launch the interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860)