Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# training_space/app.py (Training Space Backend)
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import subprocess
|
| 5 |
+
import os
|
| 6 |
+
import uuid
|
| 7 |
+
from transformers import HfApi, HfFolder
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
# Define the expected payload structure
|
| 12 |
+
class TrainingRequest(BaseModel):
|
| 13 |
+
task: str # 'generation' or 'classification'
|
| 14 |
+
model_params: dict
|
| 15 |
+
model_name: str
|
| 16 |
+
dataset_content: str # The actual content of the dataset
|
| 17 |
+
|
| 18 |
+
# Ensure Hugging Face API token is set as an environment variable
|
| 19 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 20 |
+
if not HF_API_TOKEN:
|
| 21 |
+
raise ValueError("HF_API_TOKEN environment variable not set.")
|
| 22 |
+
|
| 23 |
+
# Save the token
|
| 24 |
+
HfFolder.save_token(HF_API_TOKEN)
|
| 25 |
+
api = HfApi()
|
| 26 |
+
|
| 27 |
+
@app.post("/train")
|
| 28 |
+
def train_model(request: TrainingRequest):
|
| 29 |
+
try:
|
| 30 |
+
# Create a unique directory for this training session
|
| 31 |
+
session_id = str(uuid.uuid4())
|
| 32 |
+
session_dir = f"./training_sessions/{session_id}"
|
| 33 |
+
os.makedirs(session_dir, exist_ok=True)
|
| 34 |
+
|
| 35 |
+
# Save the dataset content to a file
|
| 36 |
+
dataset_path = os.path.join(session_dir, "dataset.txt")
|
| 37 |
+
with open(dataset_path, "w", encoding="utf-8") as f:
|
| 38 |
+
f.write(request.dataset_content)
|
| 39 |
+
|
| 40 |
+
# Prepare the command to run the training script
|
| 41 |
+
cmd = [
|
| 42 |
+
"python", "train_model.py",
|
| 43 |
+
"--task", request.task,
|
| 44 |
+
"--model_name", request.model_name,
|
| 45 |
+
"--dataset", dataset_path,
|
| 46 |
+
"--num_layers", str(request.model_params['num_layers']),
|
| 47 |
+
"--attention_heads", str(request.model_params['attention_heads']),
|
| 48 |
+
"--hidden_size", str(request.model_params['hidden_size']),
|
| 49 |
+
"--vocab_size", str(request.model_params['vocab_size']),
|
| 50 |
+
"--sequence_length", str(request.model_params['sequence_length'])
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Start the training process as a background task
|
| 54 |
+
subprocess.Popen(cmd, cwd=session_dir)
|
| 55 |
+
|
| 56 |
+
return {"status": "Training started", "session_id": session_id}
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
raise HTTPException(status_code=500, detail=str(e))
|