Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,18 @@ import subprocess
|
|
5 |
import os
|
6 |
import uuid
|
7 |
from huggingface_hub import HfApi, HfFolder
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Define the expected payload structure
|
12 |
class TrainingRequest(BaseModel):
|
13 |
task: str # 'generation' or 'classification'
|
@@ -24,9 +33,17 @@ if not HF_API_TOKEN:
|
|
24 |
HfFolder.save_token(HF_API_TOKEN)
|
25 |
api = HfApi()
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@app.post("/train")
|
28 |
def train_model(request: TrainingRequest):
|
29 |
try:
|
|
|
30 |
# Create a unique directory for this training session
|
31 |
session_id = str(uuid.uuid4())
|
32 |
session_dir = f"./training_sessions/{session_id}"
|
@@ -53,7 +70,23 @@ def train_model(request: TrainingRequest):
|
|
53 |
# Start the training process as a background task
|
54 |
subprocess.Popen(cmd, cwd=session_dir)
|
55 |
|
|
|
|
|
56 |
return {"status": "Training started", "session_id": session_id}
|
57 |
|
58 |
except Exception as e:
|
|
|
59 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
import uuid
|
7 |
from huggingface_hub import HfApi, HfFolder
|
8 |
+
import logging
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(
|
14 |
+
filename='training.log',
|
15 |
+
filemode='a',
|
16 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
17 |
+
level=logging.INFO
|
18 |
+
)
|
19 |
+
|
20 |
# Define the expected payload structure
|
21 |
class TrainingRequest(BaseModel):
|
22 |
task: str # 'generation' or 'classification'
|
|
|
33 |
HfFolder.save_token(HF_API_TOKEN)
|
34 |
api = HfApi()
|
35 |
|
36 |
+
@app.get("/")
|
37 |
+
def read_root():
|
38 |
+
return {
|
39 |
+
"message": "Welcome to the Training Space API!",
|
40 |
+
"instructions": "To train a model, send a POST request to /train with the required parameters."
|
41 |
+
}
|
42 |
+
|
43 |
@app.post("/train")
|
44 |
def train_model(request: TrainingRequest):
|
45 |
try:
|
46 |
+
logging.info(f"Received training request for model: {request.model_name}, Task: {request.task}")
|
47 |
# Create a unique directory for this training session
|
48 |
session_id = str(uuid.uuid4())
|
49 |
session_dir = f"./training_sessions/{session_id}"
|
|
|
70 |
# Start the training process as a background task
|
71 |
subprocess.Popen(cmd, cwd=session_dir)
|
72 |
|
73 |
+
logging.info(f"Training started for model: {request.model_name}, Session ID: {session_id}")
|
74 |
+
|
75 |
return {"status": "Training started", "session_id": session_id}
|
76 |
|
77 |
except Exception as e:
|
78 |
+
logging.error(f"Error during training request: {str(e)}")
|
79 |
raise HTTPException(status_code=500, detail=str(e))
|
80 |
+
|
81 |
+
# Optional: Status Endpoint
|
82 |
+
@app.get("/status/{session_id}")
|
83 |
+
def get_status(session_id: str):
|
84 |
+
session_dir = f"./training_sessions/{session_id}"
|
85 |
+
log_file = os.path.join(session_dir, "training.log")
|
86 |
+
if not os.path.exists(log_file):
|
87 |
+
raise HTTPException(status_code=404, detail="Session ID not found.")
|
88 |
+
|
89 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
90 |
+
logs = f.read()
|
91 |
+
|
92 |
+
return {"session_id": session_id, "logs": logs}
|