Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# ---------- EXPLANATION TEXT ----------
|
6 |
+
motor_text = """
|
7 |
+
## How an Electric Motor Runs
|
8 |
+
|
9 |
+
An electric motor converts electrical energy into mechanical energy using **electromagnetism**.
|
10 |
+
|
11 |
+
**Key parts:**
|
12 |
+
- **Rotor** β The rotating part.
|
13 |
+
- **Stator** β The stationary part with magnets or coils.
|
14 |
+
- **Commutator & Brushes** β Switch current direction to keep the rotor spinning.
|
15 |
+
|
16 |
+
**Basic principle:**
|
17 |
+
When current flows through a coil in a magnetic field, a force (Lorentz force) acts on it, making it rotate. Changing current direction at the right time keeps it spinning.
|
18 |
+
"""
|
19 |
+
|
20 |
+
# ---------- DIAGRAM FUNCTION ----------
|
21 |
+
def draw_motor(angle):
|
22 |
+
fig, ax = plt.subplots(figsize=(4,4))
|
23 |
+
ax.set_xlim(-1.5, 1.5)
|
24 |
+
ax.set_ylim(-1.5, 1.5)
|
25 |
+
ax.set_aspect('equal')
|
26 |
+
ax.axis('off')
|
27 |
+
|
28 |
+
# Magnetic field lines
|
29 |
+
for y in np.linspace(-1, 1, 5):
|
30 |
+
ax.arrow(-1.4, y, 2.8, 0, head_width=0.05, color='blue')
|
31 |
+
|
32 |
+
# Rotor coil
|
33 |
+
coil_x = [0.5*np.cos(angle), -0.5*np.cos(angle)]
|
34 |
+
coil_y = [0.5*np.sin(angle), -0.5*np.sin(angle)]
|
35 |
+
ax.plot(coil_x, coil_y, color='red', linewidth=3)
|
36 |
+
|
37 |
+
# Rotor circle
|
38 |
+
circle = plt.Circle((0,0), 0.6, fill=False, color='black', linewidth=1.5)
|
39 |
+
ax.add_artist(circle)
|
40 |
+
|
41 |
+
# Force arrows
|
42 |
+
ax.arrow(coil_x[0], coil_y[0], 0.2*np.sin(angle), -0.2*np.cos(angle), color='green', width=0.01)
|
43 |
+
ax.arrow(coil_x[1], coil_y[1], -0.2*np.sin(angle), 0.2*np.cos(angle), color='green', width=0.01)
|
44 |
+
|
45 |
+
plt.close(fig)
|
46 |
+
return fig
|
47 |
+
|
48 |
+
# ---------- QUIZ ----------
|
49 |
+
quiz_questions = [
|
50 |
+
("What part of a motor rotates?", ["Stator", "Rotor", "Magnet", "Brushes"], "Rotor"),
|
51 |
+
("What converts electrical to mechanical energy?", ["Generator", "Motor", "Battery", "Switch"], "Motor"),
|
52 |
+
("What keeps the motor spinning in the same direction?", ["Magnets", "Switch", "Commutator", "Resistor"], "Commutator")
|
53 |
+
]
|
54 |
+
|
55 |
+
def quiz(q_idx, answer):
|
56 |
+
question, options, correct = quiz_questions[q_idx]
|
57 |
+
if answer == correct:
|
58 |
+
return "β
Correct!"
|
59 |
+
else:
|
60 |
+
return f"β Incorrect. Correct answer: {correct}"
|
61 |
+
|
62 |
+
# ---------- GRADIO UI ----------
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("# Spin It! β How an Electric Motor Runs")
|
65 |
+
|
66 |
+
with gr.Tab("Learn"):
|
67 |
+
gr.Markdown(motor_text)
|
68 |
+
angle_slider = gr.Slider(0, 2*np.pi, value=0, step=0.1, label="Rotor Angle")
|
69 |
+
image_output = gr.Plot()
|
70 |
+
angle_slider.change(lambda a: draw_motor(a), inputs=angle_slider, outputs=image_output)
|
71 |
+
draw_motor(0)
|
72 |
+
|
73 |
+
with gr.Tab("Test Yourself"):
|
74 |
+
q_idx = gr.Number(value=0, label="Question Number (0-2)", precision=0)
|
75 |
+
answer_choice = gr.Radio(["Stator", "Rotor", "Magnet", "Brushes"], label="Select your answer")
|
76 |
+
quiz_btn = gr.Button("Submit Answer")
|
77 |
+
quiz_output = gr.Textbox(label="Result")
|
78 |
+
quiz_btn.click(quiz, inputs=[q_idx, answer_choice], outputs=quiz_output)
|
79 |
+
|
80 |
+
demo.launch()
|