Vishwas1 commited on
Commit
6c2240a
·
verified ·
1 Parent(s): 828331c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -16
app.py CHANGED
@@ -10,10 +10,6 @@ def load_model(model_name):
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
  return tokenizer, model
12
 
13
- # Models to compare
14
- original_model_name = "Vishwas1/hummingbird-base-marathi-finetuned"
15
- fine_tuned_model_name = "Vishwas1/hummingbird-base-marathi-finetuned-finetuned"
16
-
17
  # Load Hugging Face token
18
  hf_token = os.getenv('HF_API_TOKEN')
19
  if not hf_token:
@@ -22,16 +18,16 @@ if not hf_token:
22
  # Login to Hugging Face Hub
23
  login(hf_token)
24
 
25
- # Load the original and fine-tuned models
26
- original_tokenizer, original_model = load_model(original_model_name)
27
- fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name)
 
 
28
 
29
- # Ensure models are in evaluation mode
30
- original_model.eval()
31
- fine_tuned_model.eval()
32
 
33
- # Function to compare text generation from both models
34
- def compare_models(prompt):
35
  # Generate text with the original model
36
  inputs_orig = original_tokenizer(prompt, return_tensors="pt")
37
  with torch.no_grad():
@@ -54,13 +50,15 @@ def compare_models(prompt):
54
  # Gradio Interface
55
  iface = gr.Interface(
56
  fn=compare_models,
57
- inputs=gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
 
 
 
 
58
  outputs=gr.JSON(label="Generated Texts"),
59
  title="Compare Text Generation from Original and Fine-Tuned Models",
60
- description="Enter a prompt to generate text from the original and fine-tuned models."
61
  )
62
 
63
  iface.launch()
64
 
65
-
66
-
 
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
  return tokenizer, model
12
 
 
 
 
 
13
  # Load Hugging Face token
14
  hf_token = os.getenv('HF_API_TOKEN')
15
  if not hf_token:
 
18
  # Login to Hugging Face Hub
19
  login(hf_token)
20
 
21
+ # Function to compare text generation from both models
22
+ def compare_models(prompt, original_model_name, fine_tuned_model_name):
23
+ # Load the original and fine-tuned models based on user input
24
+ original_tokenizer, original_model = load_model(original_model_name)
25
+ fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name)
26
 
27
+ # Ensure models are in evaluation mode
28
+ original_model.eval()
29
+ fine_tuned_model.eval()
30
 
 
 
31
  # Generate text with the original model
32
  inputs_orig = original_tokenizer(prompt, return_tensors="pt")
33
  with torch.no_grad():
 
50
  # Gradio Interface
51
  iface = gr.Interface(
52
  fn=compare_models,
53
+ inputs=[
54
+ gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
55
+ gr.Textbox(lines=1, placeholder="Enter original model name...", label="Original Model Name", default="Vishwas1/hummingbird-base-marathi-finetuned"),
56
+ gr.Textbox(lines=1, placeholder="Enter fine-tuned model name...", label="Fine-Tuned Model Name", default="Vishwas1/hummingbird-base-marathi-finetuned-finetuned")
57
+ ],
58
  outputs=gr.JSON(label="Generated Texts"),
59
  title="Compare Text Generation from Original and Fine-Tuned Models",
60
+ description="Enter a prompt and model names to generate text from the original and fine-tuned models."
61
  )
62
 
63
  iface.launch()
64