Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,6 @@ def load_model(model_name):
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
return tokenizer, model
|
12 |
|
13 |
-
# Models to compare
|
14 |
-
original_model_name = "Vishwas1/hummingbird-base-marathi-finetuned"
|
15 |
-
fine_tuned_model_name = "Vishwas1/hummingbird-base-marathi-finetuned-finetuned"
|
16 |
-
|
17 |
# Load Hugging Face token
|
18 |
hf_token = os.getenv('HF_API_TOKEN')
|
19 |
if not hf_token:
|
@@ -22,16 +18,16 @@ if not hf_token:
|
|
22 |
# Login to Hugging Face Hub
|
23 |
login(hf_token)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
# Ensure models are in evaluation mode
|
30 |
-
original_model.eval()
|
31 |
-
fine_tuned_model.eval()
|
32 |
|
33 |
-
# Function to compare text generation from both models
|
34 |
-
def compare_models(prompt):
|
35 |
# Generate text with the original model
|
36 |
inputs_orig = original_tokenizer(prompt, return_tensors="pt")
|
37 |
with torch.no_grad():
|
@@ -54,13 +50,15 @@ def compare_models(prompt):
|
|
54 |
# Gradio Interface
|
55 |
iface = gr.Interface(
|
56 |
fn=compare_models,
|
57 |
-
inputs=
|
|
|
|
|
|
|
|
|
58 |
outputs=gr.JSON(label="Generated Texts"),
|
59 |
title="Compare Text Generation from Original and Fine-Tuned Models",
|
60 |
-
description="Enter a prompt to generate text from the original and fine-tuned models."
|
61 |
)
|
62 |
|
63 |
iface.launch()
|
64 |
|
65 |
-
|
66 |
-
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
return tokenizer, model
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# Load Hugging Face token
|
14 |
hf_token = os.getenv('HF_API_TOKEN')
|
15 |
if not hf_token:
|
|
|
18 |
# Login to Hugging Face Hub
|
19 |
login(hf_token)
|
20 |
|
21 |
+
# Function to compare text generation from both models
|
22 |
+
def compare_models(prompt, original_model_name, fine_tuned_model_name):
|
23 |
+
# Load the original and fine-tuned models based on user input
|
24 |
+
original_tokenizer, original_model = load_model(original_model_name)
|
25 |
+
fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name)
|
26 |
|
27 |
+
# Ensure models are in evaluation mode
|
28 |
+
original_model.eval()
|
29 |
+
fine_tuned_model.eval()
|
30 |
|
|
|
|
|
31 |
# Generate text with the original model
|
32 |
inputs_orig = original_tokenizer(prompt, return_tensors="pt")
|
33 |
with torch.no_grad():
|
|
|
50 |
# Gradio Interface
|
51 |
iface = gr.Interface(
|
52 |
fn=compare_models,
|
53 |
+
inputs=[
|
54 |
+
gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
|
55 |
+
gr.Textbox(lines=1, placeholder="Enter original model name...", label="Original Model Name", default="Vishwas1/hummingbird-base-marathi-finetuned"),
|
56 |
+
gr.Textbox(lines=1, placeholder="Enter fine-tuned model name...", label="Fine-Tuned Model Name", default="Vishwas1/hummingbird-base-marathi-finetuned-finetuned")
|
57 |
+
],
|
58 |
outputs=gr.JSON(label="Generated Texts"),
|
59 |
title="Compare Text Generation from Original and Fine-Tuned Models",
|
60 |
+
description="Enter a prompt and model names to generate text from the original and fine-tuned models."
|
61 |
)
|
62 |
|
63 |
iface.launch()
|
64 |
|
|
|
|