Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the original pre-trained model
|
6 |
+
def load_model(model_name):
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
return tokenizer, model
|
10 |
+
|
11 |
+
# Models to compare
|
12 |
+
original_model_name = "bert-base-uncased" # Replace with your original model
|
13 |
+
fine_tuned_model_name = "Vishwas1/bert-base-imdb" # Replace with your fine-tuned model's repo ID
|
14 |
+
|
15 |
+
# Load models
|
16 |
+
original_tokenizer, original_model = load_model(original_model_name)
|
17 |
+
fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name)
|
18 |
+
|
19 |
+
# Ensure models are in evaluation mode
|
20 |
+
original_model.eval()
|
21 |
+
fine_tuned_model.eval()
|
22 |
+
|
23 |
+
def compare_models(text):
|
24 |
+
# Original model prediction
|
25 |
+
inputs_orig = original_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs_orig = original_model(**inputs_orig)
|
28 |
+
logits_orig = outputs_orig.logits
|
29 |
+
probs_orig = torch.softmax(logits_orig, dim=1)
|
30 |
+
pred_orig = torch.argmax(probs_orig, dim=1).item()
|
31 |
+
confidence_orig = probs_orig[0][pred_orig].item()
|
32 |
+
|
33 |
+
# Fine-tuned model prediction
|
34 |
+
inputs_fine = fine_tuned_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs_fine = fine_tuned_model(**inputs_fine)
|
37 |
+
logits_fine = outputs_fine.logits
|
38 |
+
probs_fine = torch.softmax(logits_fine, dim=1)
|
39 |
+
pred_fine = torch.argmax(probs_fine, dim=1).item()
|
40 |
+
confidence_fine = probs_fine[0][pred_fine].item()
|
41 |
+
|
42 |
+
# Map predictions to labels (adjust based on your model's labels)
|
43 |
+
labels = {0: "Negative", 1: "Positive"}
|
44 |
+
|
45 |
+
result = {
|
46 |
+
"Original Model Prediction": f"{labels[pred_orig]} ({confidence_orig:.2f})",
|
47 |
+
"Fine-Tuned Model Prediction": f"{labels[pred_fine]} ({confidence_fine:.2f})"
|
48 |
+
}
|
49 |
+
return result
|
50 |
+
|
51 |
+
# Gradio Interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=compare_models,
|
54 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
|
55 |
+
outputs=gr.JSON(label="Model Predictions"),
|
56 |
+
title="Compare Original and Fine-Tuned Models",
|
57 |
+
description="Enter text to see predictions from the original and fine-tuned models."
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch()
|