Vishwas1 commited on
Commit
06760de
·
verified ·
1 Parent(s): 30579a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -27
app.py CHANGED
@@ -4,7 +4,7 @@ import torch
4
  from huggingface_hub import login
5
  import os
6
 
7
- # Load the original pre-trained model
8
  def load_model(model_name):
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
@@ -12,9 +12,9 @@ def load_model(model_name):
12
 
13
  # Models to compare
14
  original_model_name = "Vishwas1/hummingbird-base-marathi" # Replace with your original model
15
- fine_tuned_model_name = "Vishwas1/hummingbird-finetuned-marathi" # Replace with your fine-tuned model's repo ID
16
 
17
- # Load models
18
  hf_token = os.getenv('HF_API_TOKEN')
19
  if not hf_token:
20
  raise ValueError("Error: Hugging Face token not found. Please set it as an environment variable.")
@@ -30,32 +30,24 @@ fine_tuned_tokenizer, fine_tuned_model = load_model(fine_tuned_model_name)
30
  original_model.eval()
31
  fine_tuned_model.eval()
32
 
33
- # Function to compare models
34
- def compare_models(text):
35
- # Original model prediction
36
- inputs_orig = original_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
37
  with torch.no_grad():
38
- outputs_orig = original_model(**inputs_orig)
39
- logits_orig = outputs_orig.logits
40
- probs_orig = torch.softmax(logits_orig, dim=1)
41
- pred_orig = torch.argmax(probs_orig, dim=1).item()
42
- confidence_orig = probs_orig[0][pred_orig].item()
43
 
44
- # Fine-tuned model prediction
45
- inputs_fine = fine_tuned_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
46
  with torch.no_grad():
47
- outputs_fine = fine_tuned_model(**inputs_fine)
48
- logits_fine = outputs_fine.logits
49
- probs_fine = torch.softmax(logits_fine, dim=1)
50
- pred_fine = torch.argmax(probs_fine, dim=1).item()
51
- confidence_fine = probs_fine[0][pred_fine].item()
52
-
53
- # Map predictions to labels (adjust based on your model's labels)
54
- labels = {0: "Negative", 1: "Positive"}
55
 
 
56
  result = {
57
- "Original Model Prediction": f"{labels[pred_orig]} ({confidence_orig:.2f})",
58
- "Fine-Tuned Model Prediction": f"{labels[pred_fine]} ({confidence_fine:.2f})"
59
  }
60
  return result
61
 
@@ -63,11 +55,12 @@ def compare_models(text):
63
  iface = gr.Interface(
64
  fn=compare_models,
65
  inputs=gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
66
- outputs=gr.JSON(label="Model Predictions"),
67
- title="Compare Original and Fine-Tuned Models",
68
- description="Enter text to see predictions from the original and fine-tuned models."
69
  )
70
 
71
  iface.launch()
72
 
73
 
 
 
4
  from huggingface_hub import login
5
  import os
6
 
7
+ # Load text generation model
8
  def load_model(model_name):
9
  tokenizer = AutoTokenizer.from_pretrained(model_name)
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
 
12
 
13
  # Models to compare
14
  original_model_name = "Vishwas1/hummingbird-base-marathi" # Replace with your original model
15
+ fine_tuned_model_name = "Vishwas1/hummingbird-finetuned-marathi" # Replace with your fine-tuned model
16
 
17
+ # Load Hugging Face token
18
  hf_token = os.getenv('HF_API_TOKEN')
19
  if not hf_token:
20
  raise ValueError("Error: Hugging Face token not found. Please set it as an environment variable.")
 
30
  original_model.eval()
31
  fine_tuned_model.eval()
32
 
33
+ # Function to compare text generation from both models
34
+ def compare_models(prompt):
35
+ # Generate text with the original model
36
+ inputs_orig = original_tokenizer(prompt, return_tensors="pt")
37
  with torch.no_grad():
38
+ generated_ids_orig = original_model.generate(inputs_orig["input_ids"], max_length=100)
39
+ generated_text_orig = original_tokenizer.decode(generated_ids_orig[0], skip_special_tokens=True)
 
 
 
40
 
41
+ # Generate text with the fine-tuned model
42
+ inputs_fine = fine_tuned_tokenizer(prompt, return_tensors="pt")
43
  with torch.no_grad():
44
+ generated_ids_fine = fine_tuned_model.generate(inputs_fine["input_ids"], max_length=100)
45
+ generated_text_fine = fine_tuned_tokenizer.decode(generated_ids_fine[0], skip_special_tokens=True)
 
 
 
 
 
 
46
 
47
+ # Return the generated text from both models for comparison
48
  result = {
49
+ "Original Model Output": generated_text_orig,
50
+ "Fine-Tuned Model Output": generated_text_fine
51
  }
52
  return result
53
 
 
55
  iface = gr.Interface(
56
  fn=compare_models,
57
  inputs=gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
58
+ outputs=gr.JSON(label="Generated Texts"),
59
+ title="Compare Text Generation from Original and Fine-Tuned Models",
60
+ description="Enter a prompt to generate text from the original and fine-tuned models."
61
  )
62
 
63
  iface.launch()
64
 
65
 
66
+