import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt from typing import Dict, List, Optional, Tuple from periodictable import elements # ========================= # Helpers & data utilities # ========================= def to_float(x): """Coerce periodictable values (incl. uncertainties) to float; else NaN.""" if x is None: return np.nan v = getattr(x, "nominal_value", x) try: return float(v) except Exception: return np.nan NUMERIC_PROPS = [ ("mass", "Atomic mass (u)"), ("density", "Density (g/cm^3)"), ("electronegativity", "Pauling electronegativity"), ("boiling_point", "Boiling point (K)"), ("melting_point", "Melting point (K)"), ("vdw_radius", "van der Waals radius (pm)"), ("covalent_radius", "Covalent radius (pm)"), ] CURATED_FACTS: Dict[str, List[str]] = { "H": ["Lightest element; dominant in stars."], "He": ["Inert; used in cryogenics and balloons."], "Li": ["Key in Li-ion batteries."], "C": ["Same element → diamond vs graphite (allotropy)."], "N": ["~78% of Earth’s atmosphere (N₂)."], "O": ["~21% of air; crucial for respiration."], "Na": ["Violently reacts with water."], "Mg": ["Burns with bright white flame."], "Si": ["Semiconductor backbone."], "Cl": ["Disinfectant; elemental Cl₂ is toxic."], "Fe": ["Steel & blood (heme) MVP."], "Cu": ["Great conductor; green patina."], "Ag": ["Highest electrical conductivity."], "Au": ["Very unreactive; great for electronics/jewelry."], "Hg": ["Liquid metal at room temp; toxic."], "Pb": ["Dense; toxicity drove phase-outs."], "U": ["Nuclear fuel (U-235)."], "Pu": ["Man-made in quantity; nuclear uses."], "F": ["Most electronegative; extremely reactive."], "Ne": ["Classic red-orange glow tubes."], "Xe": ["HID lamps & flashes."], } GROUP_FACTS = { "alkali": "Alkali metal: very reactive; forms +1; reacts with water.", "alkaline-earth": "Alkaline earth metal: reactive; forms +2.", "transition": "Transition metal: variable oxidation states; often colored compounds.", "post-transition": "Post-transition metal: softer; lower melting than transition metals.", "metalloid": "Metalloid: between metals and nonmetals; often semiconductors.", "nonmetal": "Nonmetal: covalent chemistry; key biological roles.", "halogen": "Halogen: ns²np⁵; gains 1e⁻; forms salts.", "noble-gas": "Noble gas: ns²np⁶; inert, monatomic.", "lanthanide": "Lanthanide: rare earths; magnets/lasers/phosphors.", "actinide": "Actinide: radioactive; nuclear materials.", } def classify_category(el) -> str: try: if el.block == "s" and el.group == 1 and el.number != 1: return "alkali" if el.block == "s" and el.group == 2: return "alkaline-earth" if el.block == "d": return "transition" if el.block == "p" and el.group == 17: return "halogen" if el.block == "p" and el.group == 18: return "noble-gas" if el.block == "f" and 57 <= el.number <= 71: return "lanthanide" if el.block == "f" and 89 <= el.number <= 103: return "actinide" if el.block == "p" and not el.metallic: return "nonmetal" if el.block == "p" and el.metallic: return "post-transition" except Exception: pass return "post-transition" if getattr(el, "metallic", False) else "nonmetal" def build_elements_df() -> pd.DataFrame: rows = [] for Z in range(1, 119): el = elements[Z] if el is None: continue rows.append({ "Z": el.number, "symbol": el.symbol, "name": el.name.title(), "period": getattr(el, "period", None), "group": getattr(el, "group", None), "block": getattr(el, "block", None), "mass": to_float(getattr(el, "mass", None)), "density": to_float(getattr(el, "density", None)), "electronegativity": to_float(getattr(el, "electronegativity", None)), "boiling_point": to_float(getattr(el, "boiling_point", None)), "melting_point": to_float(getattr(el, "melting_point", None)), "vdw_radius": to_float(getattr(el, "vdw_radius", None)), "covalent_radius": to_float(getattr(el, "covalent_radius", None)), "category": classify_category(el), "is_radioactive": bool(getattr(el, "radioactive", False)), }) return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True) DF = build_elements_df() # ========================= # Hard-coded periodic layout # ========================= # Periods 1–7, groups 1–18; La/Ac shown in group 3; f-block split below. GRID = [ [1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2], [3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10], [11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], [55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86], [87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], ] LAN = list(range(58, 72)) # Ce..Lu ACT = list(range(90, 104)) # Th..Lr def find_pos_in_grid(Z:int) -> Tuple[Optional[int], Optional[int]]: for r in range(len(GRID)): for c in range(len(GRID[0])): if GRID[r][c] == Z: return (r+1, c+1) # human-friendly (period, group) return (None, None) # ========================= # Explanations # ========================= def valence_pattern(period:int, group:int, block:str) -> str: if period is None or group is None or block is None: return "Valence pattern unavailable." n = period if block == "s": return f"{n}s¹" if group == 1 else f"{n}s²" if block == "p" and 13 <= group <= 18: p_e = group - 12 # 1..6 return f"{n}s²{n}p^{p_e}" if block == "d": return f"{n-1}d^(1–10){n}s^(0–2) (incomplete d-subshell)" if block == "f": return f"{n-2}f^(1–14){n-1}d^(0–1){n}s² (f-block)" return "Valence pattern unavailable." def explain_element(row:dict, Z:int) -> str: period, group = find_pos_in_grid(Z) block = row["block"] cat = row["category"] en = row["electronegativity"] dens = row["density"] lines = [] # Valence / block logic lines.append(f"**Valence & block:** {valence_pattern(period, group, block)}; {cat.replace('-', ' ')}.") # Reactivity / tendencies if group == 1: lines.append("**Reactivity:** Group 1 (ns¹) → easily loses 1 e⁻ (forms +1), reacts strongly with water.") elif group == 2: lines.append("**Reactivity:** Group 2 (ns²) → tends to lose 2 e⁻ (forms +2).") elif group == 17: lines.append("**Reactivity:** Halogen (ns²np⁵) → tends to gain 1 e⁻; oxidizing; reactivity decreases down the group.") elif group == 18: lines.append("**Reactivity:** Noble gas (ns²np⁶) → filled shell, minimal reactivity.") elif block == "d": lines.append("**d-block behavior:** Partially filled d-orbitals → multiple oxidation states; often colored complexes.") # Property tie-ins if not pd.isna(en) and not pd.isna(row["period"]): same_period = DF[(DF["period"] == row["period"]) & (~DF["electronegativity"].isna())] if len(same_period): med = same_period["electronegativity"].median() qual = "higher-than-average" if en > med else "lower-than-average" lines.append(f"**Electronegativity:** {en:.2f} ({qual} within period {int(row['period'])}).") if not pd.isna(dens): lines.append(f"**Density:** {dens:g} g/cm³ — linked to atomic mass and packing typical for its category.") return "### Why it behaves this way\n" + "\n".join(f"- {t}" for t in lines) # ========================= # Plotting (Matplotlib -> gr.Plot) # ========================= def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str): fig, ax = plt.subplots() ax.scatter(trend_df["Z"], trend_df[prop_key]) sel = trend_df.loc[trend_df["Z"] == Z, prop_key] if not sel.empty and not pd.isna(sel.values[0]): ax.scatter([Z], [sel.values[0]], s=80) ax.text(Z, sel.values[0], symbol, ha="center", va="bottom") ax.set_xlabel("Atomic number (Z)") ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key]) ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table") fig.tight_layout() return fig def plot_heatmap(property_key: str): prop_label = dict(NUMERIC_PROPS)[property_key] max_period, max_group = len(GRID), len(GRID[0]) grid_vals = np.full((max_period, max_group), np.nan, dtype=float) for r in range(max_period): for c in range(max_group): z = GRID[r][c] if z is None: continue val = DF.loc[DF["Z"] == z, property_key].values[0] if not pd.isna(val): grid_vals[r, c] = float(val) if np.isnan(grid_vals).all(): fig, ax = plt.subplots() ax.axis("off") ax.text(0.5, 0.5, f"No data for {prop_label}", ha="center", va="center", fontsize=12) fig.tight_layout() return fig masked = np.ma.masked_invalid(grid_vals) finite_vals = grid_vals[~np.isnan(grid_vals)] if finite_vals.size >= 2: vmin, vmax = np.nanpercentile(finite_vals, [5, 95]) else: vmin, vmax = np.nanmin(finite_vals), np.nanmax(finite_vals) fig, ax = plt.subplots() im = ax.imshow(masked, origin="upper", aspect="auto", vmin=vmin, vmax=vmax) ax.set_xticks(range(max_group)); ax.set_xticklabels([str(i) for i in range(1, max_group + 1)]) ax.set_yticks(range(max_period)); ax.set_yticklabels([str(i) for i in range(1, max_period + 1)]) ax.set_xlabel("Group"); ax.set_ylabel("Period") ax.set_title(f"Periodic heatmap: {prop_label}") fig.colorbar(im, ax=ax, label=prop_label) fig.tight_layout() return fig # ========================= # Core callbacks # ========================= def compose_facts(row:dict, Z:int, show_expl:bool) -> str: symbol = row["symbol"] facts = [] facts.extend(CURATED_FACTS.get(symbol, [])) gf = GROUP_FACTS.get(row["category"], None) if gf: facts.append(gf) facts_text = "\n• ".join(["**Interesting facts:**"] + facts) if facts else "" if show_expl: expl = explain_element(row, Z) facts_text = (facts_text + "\n\n" if facts_text else "") + expl return facts_text if facts_text else "No fact on file—still cool though!" def element_info(z_or_symbol: str, show_expl: bool): try: if z_or_symbol.isdigit(): Z = int(z_or_symbol) _ = elements[Z] else: el = elements.symbol(z_or_symbol) Z = el.number except Exception: return f"Unknown element: {z_or_symbol}", "No data", None, None # info, facts, fig, current_Z row = DF.loc[DF["Z"] == Z].iloc[0].to_dict() symbol = row["symbol"] def show(v): return v if (v is not None and not pd.isna(v)) else "—" props_lines = [ f"{row['name']} ({symbol}), Z = {Z}", f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, " f"Group {row['group'] if row['group'] is not None else '—'}, " f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}", f"Atomic mass: {show(row['mass'])} u", f"Density: {show(row['density'])} g/cm³", f"Electronegativity: {show(row['electronegativity'])} (Pauling)", f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K", f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm", f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}", ] info_text = "\n".join(props_lines) prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass" trend_df = DF[["Z", "symbol", prop_key]].dropna() fig = plot_trend(trend_df, prop_key, Z, symbol) facts_text = compose_facts(row, Z, show_expl) return info_text, facts_text, fig, Z def handle_button_click(z: int, show_expl: bool): return element_info(str(z), show_expl) def search_element(query: str, show_expl: bool): query = (query or "").strip() if not query: return gr.update(), gr.update(), gr.update(), gr.update() return element_info(query, show_expl) def refresh_facts(current_Z: Optional[int], show_expl: bool): if current_Z is None: return gr.update() row = DF.loc[DF["Z"] == current_Z].iloc[0].to_dict() return compose_facts(row, int(current_Z), show_expl) # ========================= # UI (Gradio 4.29.0) # ========================= with gr.Blocks(title="Interactive Periodic Table") as demo: gr.Markdown("Click an element or search by symbol/name/atomic number.") with gr.Row(): # Inspector & controls with gr.Column(scale=1): gr.Markdown("### Inspector") show_expl = gr.Checkbox(label="Show advanced explanation", value=False) search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79") info = gr.Textbox(label="Properties", lines=10, interactive=False) facts = gr.Markdown("Select an element to see facts and explanations.") trend = gr.Plot() current_Z = gr.State(value=None) search.submit(search_element, inputs=[search, show_expl], outputs=[info, facts, trend, current_Z]) show_expl.change(refresh_facts, inputs=[current_Z, show_expl], outputs=[facts]) gr.Markdown("### Trend heatmap") prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property") heat = gr.Plot() prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat]) demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat]) # Main table with gr.Column(scale=2): gr.Markdown("### Main Table") with gr.Row(): for g in range(1, 19): gr.Markdown(f"**{g}**") for r in range(len(GRID)): with gr.Row(): for c in range(len(GRID[0])): z = GRID[r][c] if z is None: gr.Button("", interactive=False) else: sym = DF.loc[DF["Z"] == z, "symbol"].values[0] btn = gr.Button(sym) btn.click( handle_button_click, inputs=[gr.Number(z, visible=False), show_expl], outputs=[info, facts, trend, current_Z], ) gr.Markdown("### f-block (lanthanides & actinides)") with gr.Row(): for z in LAN: sym = DF.loc[DF["Z"] == z, "symbol"].values[0] gr.Button(sym).click( handle_button_click, inputs=[gr.Number(z, visible=False), show_expl], outputs=[info, facts, trend, current_Z], ) with gr.Row(): for z in ACT: sym = DF.loc[DF["Z"] == z, "symbol"].values[0] gr.Button(sym).click( handle_button_click, inputs=[gr.Number(z, visible=False), show_expl], outputs=[info, facts, trend, current_Z], ) if __name__ == "__main__": demo.launch()