Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,44 @@
|
|
1 |
-
import gradio as gr
|
2 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
3 |
import torch
|
4 |
-
from PIL import Image, ImageDraw
|
|
|
|
|
5 |
import random
|
6 |
|
7 |
def detect_objects(image):
|
|
|
8 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
|
11 |
inputs = processor(images=image, return_tensors="pt")
|
12 |
outputs = model(**inputs)
|
13 |
|
|
|
|
|
14 |
target_sizes = torch.tensor([image.size[::-1]])
|
15 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
16 |
|
|
|
17 |
draw = ImageDraw.Draw(image)
|
18 |
-
|
19 |
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
20 |
box = [round(i, 2) for i in box.tolist()]
|
21 |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
22 |
draw.rectangle(box, outline=color, width=3)
|
23 |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
|
|
|
24 |
draw.text((box[0], box[1]), label_text, fill=color,)
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
return image, labels
|
28 |
|
29 |
def upload_image(file):
|
30 |
image = Image.open(file.name)
|
31 |
-
image_with_boxes,
|
32 |
-
return image_with_boxes,
|
33 |
|
34 |
-
|
35 |
-
return "\n".join(labels)
|
36 |
-
|
37 |
-
# Interface to display the image with bounding boxes
|
38 |
-
iface_objects = gr.Interface(
|
39 |
fn=upload_image,
|
40 |
inputs="file",
|
41 |
outputs=["image", "text"],
|
@@ -44,24 +47,4 @@ iface_objects = gr.Interface(
|
|
44 |
allow_flagging=False
|
45 |
)
|
46 |
|
47 |
-
|
48 |
-
iface_labels = gr.Interface(
|
49 |
-
fn=show_labels,
|
50 |
-
inputs="text",
|
51 |
-
outputs="text",
|
52 |
-
title="Detected Labels",
|
53 |
-
description="Displays the labels detected in the uploaded image.",
|
54 |
-
allow_flagging=False
|
55 |
-
)
|
56 |
-
|
57 |
-
# Combine interfaces with a tapped interface
|
58 |
-
interface = gr.Interface(
|
59 |
-
[iface_objects, iface_labels],
|
60 |
-
inputs="text",
|
61 |
-
outputs="text",
|
62 |
-
title="Object Detection with Labels",
|
63 |
-
description="Upload an image and view detected objects and labels.",
|
64 |
-
allow_flagging=False
|
65 |
-
)
|
66 |
-
|
67 |
-
interface.launch()
|
|
|
|
|
1 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
import torch
|
3 |
+
from PIL import Image, ImageDraw, ImageFont # Import ImageFont
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
import random
|
7 |
|
8 |
def detect_objects(image):
|
9 |
+
# Load the pre-trained DETR model
|
10 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
11 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
inputs = processor(images=image, return_tensors="pt")
|
14 |
outputs = model(**inputs)
|
15 |
|
16 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
17 |
+
# let's only keep detections with score > 0.9
|
18 |
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
20 |
|
21 |
+
# Draw bounding boxes and labels on the image
|
22 |
draw = ImageDraw.Draw(image)
|
23 |
+
detected_objects = []
|
24 |
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
25 |
box = [round(i, 2) for i in box.tolist()]
|
26 |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
27 |
draw.rectangle(box, outline=color, width=3)
|
28 |
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
|
29 |
+
# Larger and bolder font
|
30 |
draw.text((box[0], box[1]), label_text, fill=color,)
|
31 |
+
detected_objects.append(model.config.id2label[label.item()])
|
32 |
+
|
33 |
+
return image, ', '.join(detected_objects)
|
34 |
|
|
|
35 |
|
36 |
def upload_image(file):
|
37 |
image = Image.open(file.name)
|
38 |
+
image_with_boxes, detected_objects = detect_objects(image)
|
39 |
+
return image_with_boxes, detected_objects
|
40 |
|
41 |
+
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
42 |
fn=upload_image,
|
43 |
inputs="file",
|
44 |
outputs=["image", "text"],
|
|
|
47 |
allow_flagging=False
|
48 |
)
|
49 |
|
50 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|