Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| import numpy as np | |
| # Load the pre-trained model and tokenizer | |
| model_name = "distilbert/distilbert-base-uncased" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| # Function to preprocess the image | |
| def preprocess_image(image): | |
| image = Image.open(BytesIO(image)) | |
| image = image.resize((256, 256)) # Resize the image to match the model's input size | |
| return np.array(image) | |
| # Function to make predictions | |
| def classify_image(image): | |
| image = preprocess_image(image) | |
| inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True) | |
| outputs = model(**inputs) | |
| logits = outputs.logits.detach().numpy()[0] | |
| probabilities = np.exp(logits) / np.exp(logits).sum(-1) | |
| predicted_class = np.argmax(probabilities) | |
| return {str(i): float(prob) for i, prob in enumerate(probabilities)} | |
| # Create a Gradio interface | |
| input_image = gr.inputs.Image(shape=(256, 256)) | |
| output_label = gr.outputs.Label(num_top_classes=3) | |
| gr.Interface(classify_image, inputs=input_image, outputs=output_label).launch() | |