Vishaltiwari2019's picture
Update app.py
3e314cb verified
raw
history blame
2.96 kB
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image, ImageDraw, ImageFont # Import ImageFont
import gradio as gr
import requests
import random
def detect_objects(image):
# Load the pre-trained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
# Draw bounding boxes and labels on the image
draw = ImageDraw.Draw(image)
for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
box = [round(i, 2) for i in box.tolist()]
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
draw.rectangle(box, outline=color, width=3)
label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
# Larger and bolder font
draw.text((box[0], box[1]), label_text, fill=color,)
return image
def detect_labels(image):
# Load the pre-trained DETR model
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
labels = []
for label_id in results["labels"]:
labels.append(model.config.id2label[label_id.item()])
return labels
def upload_image_with_boxes(file):
image = Image.open(file.name)
image_with_boxes = detect_objects(image)
return image_with_boxes
def upload_image_with_labels(file):
image = Image.open(file.name)
labels = detect_labels(image)
return ", ".join(labels)
iface_boxes = gr.Interface(
fn=upload_image_with_boxes,
inputs="file",
outputs="image",
title="Object Detection with Boxes",
description="Upload an image and detect objects using DETR model. Boxes will be drawn around the detected objects.",
allow_flagging=False
)
iface_labels = gr.Interface(
fn=upload_image_with_labels,
inputs="file",
outputs="text",
title="Detected Object Labels",
description="Upload an image and get the detected object labels using DETR model.",
allow_flagging=False
)
iface_boxes.launch()
iface_labels.launch()