File size: 1,257 Bytes
d240e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PIL import Image
import requests
from io import BytesIO
import numpy as np

# Load the pre-trained model and tokenizer
model_name = "distilbert/distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Function to preprocess the image
def preprocess_image(image):
    image = Image.open(BytesIO(image))
    image = image.resize((256, 256))  # Resize the image to match the model's input size
    return np.array(image)

# Function to make predictions
def classify_image(image):
    image = preprocess_image(image)
    inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**inputs)
    logits = outputs.logits.detach().numpy()[0]
    probabilities = np.exp(logits) / np.exp(logits).sum(-1)
    predicted_class = np.argmax(probabilities)
    return {str(i): float(prob) for i, prob in enumerate(probabilities)}

# Create a Gradio interface
input_image = gr.inputs.Image(shape=(256, 256))
output_label = gr.outputs.Label(num_top_classes=3)
gr.Interface(classify_image, inputs=input_image, outputs=output_label).launch()