Spaces:
Runtime error
Runtime error
File size: 1,257 Bytes
d240e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PIL import Image
import requests
from io import BytesIO
import numpy as np
# Load the pre-trained model and tokenizer
model_name = "distilbert/distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Function to preprocess the image
def preprocess_image(image):
image = Image.open(BytesIO(image))
image = image.resize((256, 256)) # Resize the image to match the model's input size
return np.array(image)
# Function to make predictions
def classify_image(image):
image = preprocess_image(image)
inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
logits = outputs.logits.detach().numpy()[0]
probabilities = np.exp(logits) / np.exp(logits).sum(-1)
predicted_class = np.argmax(probabilities)
return {str(i): float(prob) for i, prob in enumerate(probabilities)}
# Create a Gradio interface
input_image = gr.inputs.Image(shape=(256, 256))
output_label = gr.outputs.Label(num_top_classes=3)
gr.Interface(classify_image, inputs=input_image, outputs=output_label).launch()
|